{
"cells": [
{
"cell_type": "markdown",
"id": "8501b536",
"metadata": {},
"source": [
"# Climate example"
]
},
{
"cell_type": "markdown",
"id": "06a3540a",
"metadata": {},
"source": [
"## Example\n",
"\n",
"We will look at a dataset containing carbon emissions, GDP and population for 164 countries (data from 2018).\n",
"\n",
"These data are adapted from a dataset downloaded from Our World in Data, a fabulous Oxford-based organization that provides datasets and visualizations addressing global issues.\n",
"\n",
"\n",
"### Set up Python libraries\n",
"\n",
"As usual, run the code cell below to import the relevant Python libraries"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7f1d34e0",
"metadata": {},
"outputs": [],
"source": [
"# Set-up Python libraries - you need to run this but you don't need to change it\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import scipy.stats as stats\n",
"import pandas \n",
"import seaborn as sns\n",
"sns.set_theme() # use pretty defaults"
]
},
{
"cell_type": "markdown",
"id": "5f633741",
"metadata": {},
"source": [
"### Load and inspect the data\n",
"\n",
"Load the data from the file CO2vGDP.csv"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "075f78c7",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Country
\n",
"
CO2
\n",
"
GDP
\n",
"
population
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Afghanistan
\n",
"
0.2245
\n",
"
1934.555054
\n",
"
36686788
\n",
"
\n",
"
\n",
"
1
\n",
"
Albania
\n",
"
1.6422
\n",
"
11104.166020
\n",
"
2877019
\n",
"
\n",
"
\n",
"
2
\n",
"
Algeria
\n",
"
3.8241
\n",
"
14228.025390
\n",
"
41927008
\n",
"
\n",
"
\n",
"
3
\n",
"
Angola
\n",
"
0.7912
\n",
"
7771.441895
\n",
"
31273538
\n",
"
\n",
"
\n",
"
4
\n",
"
Argentina
\n",
"
4.0824
\n",
"
18556.382810
\n",
"
44413592
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
160
\n",
"
Vietnam
\n",
"
2.3415
\n",
"
6814.142090
\n",
"
94914328
\n",
"
\n",
"
\n",
"
161
\n",
"
World
\n",
"
4.8022
\n",
"
15212.415040
\n",
"
7683789824
\n",
"
\n",
"
\n",
"
162
\n",
"
Yemen
\n",
"
0.3503
\n",
"
2284.889893
\n",
"
30790514
\n",
"
\n",
"
\n",
"
163
\n",
"
Zambia
\n",
"
0.4215
\n",
"
3534.033691
\n",
"
17835898
\n",
"
\n",
"
\n",
"
164
\n",
"
Zimbabwe
\n",
"
0.8210
\n",
"
1611.405151
\n",
"
15052191
\n",
"
\n",
" \n",
"
\n",
"
165 rows × 4 columns
\n",
"
"
],
"text/plain": [
" Country CO2 GDP population\n",
"0 Afghanistan 0.2245 1934.555054 36686788\n",
"1 Albania 1.6422 11104.166020 2877019\n",
"2 Algeria 3.8241 14228.025390 41927008\n",
"3 Angola 0.7912 7771.441895 31273538\n",
"4 Argentina 4.0824 18556.382810 44413592\n",
".. ... ... ... ...\n",
"160 Vietnam 2.3415 6814.142090 94914328\n",
"161 World 4.8022 15212.415040 7683789824\n",
"162 Yemen 0.3503 2284.889893 30790514\n",
"163 Zambia 0.4215 3534.033691 17835898\n",
"164 Zimbabwe 0.8210 1611.405151 15052191\n",
"\n",
"[165 rows x 4 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"CO2vGDP = pandas.read_csv('https://raw.githubusercontent.com/jillxoreilly/StatsCourseBook/main/data/CO2vGDP.csv')\n",
"display(CO2vGDP)"
]
},
{
"cell_type": "markdown",
"id": "d3cce993",
"metadata": {},
"source": [
"Aside - \n",
"I notice that the GDP values contain loads of decimal places which makes them hard to read. \n",
"Let's just round those:"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "732fb048",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Country
\n",
"
CO2
\n",
"
GDP
\n",
"
population
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Afghanistan
\n",
"
0.2245
\n",
"
1935.0
\n",
"
36686788
\n",
"
\n",
"
\n",
"
1
\n",
"
Albania
\n",
"
1.6422
\n",
"
11104.0
\n",
"
2877019
\n",
"
\n",
"
\n",
"
2
\n",
"
Algeria
\n",
"
3.8241
\n",
"
14228.0
\n",
"
41927008
\n",
"
\n",
"
\n",
"
3
\n",
"
Angola
\n",
"
0.7912
\n",
"
7771.0
\n",
"
31273538
\n",
"
\n",
"
\n",
"
4
\n",
"
Argentina
\n",
"
4.0824
\n",
"
18556.0
\n",
"
44413592
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
160
\n",
"
Vietnam
\n",
"
2.3415
\n",
"
6814.0
\n",
"
94914328
\n",
"
\n",
"
\n",
"
161
\n",
"
World
\n",
"
4.8022
\n",
"
15212.0
\n",
"
7683789824
\n",
"
\n",
"
\n",
"
162
\n",
"
Yemen
\n",
"
0.3503
\n",
"
2285.0
\n",
"
30790514
\n",
"
\n",
"
\n",
"
163
\n",
"
Zambia
\n",
"
0.4215
\n",
"
3534.0
\n",
"
17835898
\n",
"
\n",
"
\n",
"
164
\n",
"
Zimbabwe
\n",
"
0.8210
\n",
"
1611.0
\n",
"
15052191
\n",
"
\n",
" \n",
"
\n",
"
165 rows × 4 columns
\n",
"
"
],
"text/plain": [
" Country CO2 GDP population\n",
"0 Afghanistan 0.2245 1935.0 36686788\n",
"1 Albania 1.6422 11104.0 2877019\n",
"2 Algeria 3.8241 14228.0 41927008\n",
"3 Angola 0.7912 7771.0 31273538\n",
"4 Argentina 4.0824 18556.0 44413592\n",
".. ... ... ... ...\n",
"160 Vietnam 2.3415 6814.0 94914328\n",
"161 World 4.8022 15212.0 7683789824\n",
"162 Yemen 0.3503 2285.0 30790514\n",
"163 Zambia 0.4215 3534.0 17835898\n",
"164 Zimbabwe 0.8210 1611.0 15052191\n",
"\n",
"[165 rows x 4 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"CO2vGDP['GDP']=CO2vGDP['GDP'].round()\n",
"display(CO2vGDP)"
]
},
{
"cell_type": "markdown",
"id": "2abcbb1a",
"metadata": {},
"source": [
"It is easier to comapre the values now as the larger GDPs actually take up more space!"
]
},
{
"cell_type": "markdown",
"id": "abc7e702",
"metadata": {},
"source": [
"### Plot the data\n",
"\n",
"Let's plot the data. A scatterplot is a good choice for bivariate data such as these."
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "65493236",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'CO2 emissions: tonnes/person/year')"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG5CAYAAAB802v0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvHElEQVR4nO3dd1zV9f4H8NcZHIaIgqK4UkGGJEtxiwM1y73KSlw5cOfNrWVmmZYrF6KpZY5yEY7WL/Mmeq+aeHHvATlCEBkiHOCc8/39QZw4rDM4h3M4vJ6PR4/i+/2ez3m/lThvPlMkCIIAIiIiIiqV2NwBEBEREVk6FkxEREREWrBgIiIiItKCBRMRERGRFiyYiIiIiLRgwURERESkBQsmIiIiIi1YMBERERFpwYKJiIiISAuLKpju37+PoKAgREVFqa9dv34dYWFhCAwMRNeuXbFt2zYzRkhERERVkcUUTHl5eZg1axaysrLU11JTUzFmzBg0adIEBw8exLRp07B27VocPHjQjJESERFRVSM1dwAF1q9fj2rVqmlc27dvH2QyGRYvXgypVAoPDw8kJCTgyy+/xJAhQwx+L0EQoFIZ9wg9sVhk9DYtUVXJE2Cu1oq5Wifmap0K5yoWiyASicwWi0UUTOfOncPevXsRHR2Nrl27qq/HxsaidevWkEr/CbNdu3bYvHkzUlJSUKtWLYPeT6US8OzZi/KGrSaViuHsXA0ZGVlQKFRGa9fSVJU8AeZqrZirdWKu1qlori4u1SCRVOGCKSMjA3PmzMH777+PevXqadxLTEyEl5eXxrU6deoAAB4/fmxwwQTk/0UYi0Qi1vi3taoqeQLM1VoxV+vEXK2TpeVq9oJp8eLFCAwMRL9+/Yrdk8vlkMlkGtdsbW0BADk5OQa/p1gsgrNzNe0P6snJyd7obVqiqpInwFytFXO1TszVOllKrmYtmKKjoxEbG4sjR46UeN/Ozg65ubka1woKJQcHB4PfV6USkJGRpf1BHUkkYjg52SMjIxtKpfV2kVaVPAHmaq2Yq3VirtapaK5OTvZm7W0ya8F08OBBpKSkaMxbAoAPP/wQ27ZtQ/369ZGUlKRxr+DrunXrluu9TTH2q1SqrH5MGag6eQLM1VoxV+vEXK2TpeRq1oJp5cqVkMvlGtdeeeUVTJ8+Hb1798YPP/yA7777DkqlEhKJBABw+vRpNG3atFzzl4iIiIj0YdaZVHXr1kXjxo01/gGAWrVqoUGDBhgyZAgyMzOxcOFC3LlzB1FRUdixYwfCw8PNGTYRERFVMZYx9bwUtWrVwtatW3H//n0MGjQIGzZswJw5czBo0CBzh0ZERERViNlXyRV18+ZNja/9/f2xd+9eM0VDREREZOE9TERERESWgAUTERERkRYsmIiIiIi0YMFERERE5SaIRMhSqPA0MxdZChUEMx6UawoWN+mbiIiIKhelSISIg5cQdytZfS3I2xWTB/tDIghmjMx42MNEREREBhNKKJYAIO5mMiKiLllNTxMLJiIiIjJYdp6yWLFUIO5mMrLzlBUckWmwYCIiIiKDZckV5bpfWbBgIiIiIoM52JU9HVrb/cqCBRMREREZzN5GgiBv1xLvBXm7wt5GUsERmQYLJiIiIjKYSBAwebB/saKpYJWcyEpWyVlHPxkRERGZjUQQMHWwP7LzlMiSK+BgJ4W9jcRqiiWABRMREREZgUgQ4CAVw8FRln/BioolgENyRERERFqxYCIiIiLSggUTERERkRYsmIiIiIi0YMFEREREpAULJiIiIiItWDARERERacGCiYiIiEgLFkxEREREWrBgIiIiItKCBRMRERGRFiyYiIiIiLRgwURERESkBQsmIiIiIi1YMBERERFpwYKJiIiISAsWTERERERasGAiIiIi0oIFExEREZEWUnMHkJKSguXLl+PkyZPIyclB69atMWfOHDRr1gwAMH/+fERFRWm8pm7duoiJiTFHuERERFQFmb1gmjRpEsRiMb788ks4ODhg7dq1GD16NH799VfY29vj5s2bmDhxIsLCwtSvkUgkZoyYiIiIqhqzDsmlpqaiYcOG+Pjjj+Hn5wcPDw9MnjwZycnJuH37NpRKJe7cuQM/Pz+4urqq/3FxcTFn2ERERFTFmLWHydnZGatXr1Z//fTpU2zbtg1ubm5o1qwZ4uPjkZOTAw8PDzNGSURERFWd2YfkCnzwwQfYt28fZDIZNm3aBAcHB9y6dQsikQg7duxATEwMxGIxunTpghkzZqB69erlej+p1HidaxKJWOPf1qqq5AkwV2vFXK0Tc7VOlparSBAEwdxBAMCdO3cgl8vx7bff4ujRo9izZw9+++03REZG4l//+he6dOmChIQEfPbZZ6hXrx527NgBsdiwP0RBECASiYycAREREVkriymYCqhUKvTr1w/+/v749NNP8fz5czg5OanvX7hwAcOGDcO+ffsQEBBg0HsolSpkZGQbK2RIJGI4OdkjIyMbSqXKaO1amqqSJ8BcrRVztU7M1ToVzdXJyd6svU1mHZJLSUnB6dOn8dprr6lXvonFYnh4eCApKQkikUijWAIALy8vAEBiYqLBBRMAKBTG/0ZTKlUmadfSVJU8AeZqrZirdWKu1slScjXrwGBSUhJmzpyJP/74Q30tLy8P165dg4eHB2bOnImxY8dqvOby5csAoN6niYiIiMjUzFow+fj4oFOnTvjoo48QGxuLW7duYe7cucjIyMDo0aPRt29f/Oc//8GmTZvw559/4sSJE1iwYAH69u3LlXNERERUYcw6JCcSifDFF19g1apVmDFjBp4/f47g4GDs3r0b9evXR/369bF27VpERkYiMjIS1atXR79+/TBjxgxzhk1ERERVjN6TvhcvXowBAwYgKCjIVDGZnFKpwrNnL4zWnlQqhrNzNaSmvrCIcVZTqSp5AszVWjFX68RcrVPRXF1cqpl10rfe73zkyBHI5XJTxEJERERkkfQumPz8/HjwLREREVUpes9h8vb2xs6dO/HLL7+gWbNmqFWrlsZ9kUiETz/91GgBEhEREZmb3gXTr7/+ijp16gDI3537zp07Gve5gzYRERFZG70LpuPHj5siDiIiIiKLZfTp5nfv3jV2k0RERERmpXcPU1paGlavXo1z584hLy8PBbsSCIKArKwspKen4/r160YPlIiIiMhc9O5hWrZsGQ4ePIgmTZpAIpGgevXq8PPzQ15eHjIyMrBkyRJTxElERERkNnoXTCdPnsTUqVOxadMmvPnmm3Bzc8MXX3yBn3/+Gd7e3sUmgRMRERFVdnoXTBkZGWjVqhUAwNPTE1euXAEAVKtWDe+88w5+//13owZIREREZG56F0zOzs54/vw5AKBx48ZISUlBamoqAKBu3bp48uSJcSMkIiIiMjO9C6b27dsjMjISDx8+RMOGDVGzZk1ERUUBAP7973/D2dnZ6EESERERmZPeBdO7776LlJQUzJs3DyKRCBMmTMCKFSvQpk0bfP311xgyZIgp4iQiIiIyG723FWjQoAF+/PFHxMfHAwDGjBmD2rVr43//+x/8/f0xaNAgY8dIREREZFZ6F0wAYGdnBx8fHwBATk4O+vbti379+hk1MCIiIiJLYdBO3/fu3cOMGTPQpk0bBAUF4dq1a1i8eDF27txp7PiIiIiIzE7vgun69esYOnQorl69in79+ql3+raxscGnn36K77//3uhBEhEREZmT3kNyn332GVq0aIHt27cDAHbv3g0AWLhwIeRyOb755hvOYyIiIiKroncP04ULFzB69GhIpVKIRCKNe71791ZPBiciIiKyFnoXTLa2tpDL5SXeS0tLg0wmK3dQRERERJZE74KpY8eOWLduHRITE9XXRCIRXrx4ge3bt6NDhw5GDZCIiIjI3PSewzR79mwMGzYMr776Knx8fCASibB8+XLcv38fgiBg9erVpoiTiIiIyGz07mGqV68eDh06hFGjRkEQBLz00kvIyspC3759ERUVhUaNGpkiTiIiIiKz0buH6fHjx6hfvz7+9a9/mSIeIiIiIoujdw9T9+7dMWbMGBw5cgQ5OTmmiImIiIjIouhdMK1cuRJSqRTz5s1Dx44dsWjRIly4cMEEoRERERFZBr2H5Pr06YM+ffogOTkZ0dHROHToEPbt24cmTZpg8ODBGDBgAOrWrWuKWImIiIjMwqCz5ADA1dUV48ePx9GjR/H999+jTp06WLNmDUJDQzFp0iScP3/emHESERERmY3BBRMAxMbG4oMPPsDo0aMRGxuLjh07YsGCBVAoFAgLC8NXX31lrDiJiIiIzEbvIbmEhAQcOnQIhw8fxqNHj9CgQQOMHDkSQ4YMgZubGwBg+PDhmDVrFjZt2oQxY8YYPWgiIiKiiqR3wdSrVy/Y2tqiR48e+Pjjj9G+ffsSn3N3d+e5ckRERGQVdCqYFAoFpNL8Rz/44AP0798f1atXL/M1kydPxuTJk7W2nZKSguXLl+PkyZPIyclB69atMWfOHDRr1gwAcP36dSxduhRXrlxBzZo1MWLECIwdO1aXsImIiIiMQqc5TK1bt8aUKVOwd+9ehIaGai2W9DFp0iQ8ePAAX375JQ4cOAA7OzuMHj0a2dnZSE1NxZgxY9CkSRMcPHgQ06ZNw9q1a3Hw4EGjvT8RERGRNjr1MO3evRsxMTGIjo7GkiVL4O7ujpCQEHTp0gWtWrVS9z7pKzU1FQ0bNsSkSZPg6ekJIL9nasCAAbh9+zZOnz4NmUyGxYsXQyqVwsPDAwkJCfjyyy8xZMgQg96TiIiISF86VTq+vr7w9fXFxIkTkZGRgVOnTuHEiRN47733IJfL0b59e3Tp0gUhISHqid+6cHZ21jis9+nTp9i2bRvc3NzQrFkzrF+/Hq1bt9YoyNq1a4fNmzcjJSUFtWrV0iNVIiIiIsPo3TXk5OSE3r17o3fv3gCAS5cuISYmBgcOHMCHH34IDw8PHDlyRO9APvjgA+zbtw8ymQybNm2Cg4MDEhMT4eXlpfFcnTp1AOSfaceCiYiIiCqCYWNphfj7+8Pf3x9Tp05FamoqTp06ZVA7o0aNwrBhw/Dtt99iypQp2LNnD+RyOWQymcZztra2AFDuc+yk0nJtQaVBIhFr/NtaVZU8AeZqrZirdWKu1snScjWoYHr+/DnOnDmDrKwsCIJglEAKVsV9/PHHuHDhAnbt2gU7Ozvk5uZqPFdQKDk4OBj8XmKxCM7O1QwPthROTvZGb9MSVZU8AeZqrZirdWKu1slSctW7YDpx4gRmzJgBuVxeYrEkEokwcOBAndpKSUnB6dOn8dprr0EikQAAxGIxPDw8kJSUBDc3NyQlJWm8puDr8pxXp1IJyMjIMvj1RUkkYjg52SMjIxtKpcpo7VqaqpInwFytFXO1TszVOhXN1cnJ3qy9TXoXTKtXr4a7uzvmz5+PunXrQiw2PPikpCTMnDkTtWrVUm+AmZeXh2vXriE0NBS1a9fGd999B6VSqS6oTp8+jaZNm5Z7/pJCYfxvNKVSZZJ2LU1VyRNgrtaKuVon5mqdLCVXvQume/fuISIiAsHBweV+cx8fH3Tq1AkfffQRPvnkEzg5OSEyMhIZGRkYPXo0bG1tsXXrVixcuBDjxo3DpUuXsGPHDnz00Uflfm+yTIJIhOw8JbLkCjjYSWFvI4HISMO+REREhtK7YKpfvz4yMzON8uYikQhffPEFVq1ahRkzZuD58+cIDg7G7t27Ub9+fQDA1q1bsXTpUgwaNAiurq6YM2cOBg0aZJT3J8uiFIkQcfAS4m4lq68Febti8mB/SFg0ERGRGYkEPWdtR0VFYfv27YiMjETDhg1NFZdJKZUqPHv2wmjtSaViODtXQ2rqC4voNjQVU+YpiETYUKRYKhDk7Yqpg/0rtKepqvydAszVWjFX61SVc3VxqVa55jAdOXIET548Qc+ePeHi4gI7OzuN+yKRCMeOHTNagFQ1ZOcpSyyWACDuZjKy85RwMOJWEERERPrQu2Byc3PTazdvIl1kyRVa7zs4ysp8hoiIyFT0LpiWLVtmijioinOwK/tbUdt9IiIiUzL4U+jkyZM4e/YsMjIy4OzsjODgYISEhBgzNqpC7G0kCPJ2RdzNkucw2dtIAE78JiIiM9G7YMrNzcXkyZNx6tQpSCQSODs7IzU1FVu2bFEfjFv0OBMibUSCgMmD/RERdUmjaCpYJcetBYiIyJz0LpjWr1+P8+fP4/PPP0efPn0gkUigUChw9OhRfPTRR4iIiMCMGTNMECpZO4kgYOpgf+7DREREFkfvZUdHjx7F1KlT0b9/f/Xu21KpFAMHDsTUqVNx9OhRowdJVYdIEOAgFaO2owwOUjGLJSIisgh6F0zPnj2Dr69vifd8fX3x5MmTcgdFREREZEn0LpheeuklnDt3rsR7Z8+eRb169codFBEREZEl0XsO05tvvolly5bBzs4Offv2Re3atfH06VMcOXIEW7duxbRp00wRJxEREZHZ6F0wvfXWW7h27RpWr16NNWvWqK8LgoBBgwZhwoQJRg2QiIiIyNz0LpjEYjGWLl2KMWPG4Ny5c0hPT0eNGjXQpk0beHh4mCJGIiIiIrMyeOPKZs2aoVmzZgCAS5cu4e7du3B1dYWTk5PRgiMiIiKyBHpP+k5OTsbIkSOxceNGAMA333yDYcOGYfr06XjllVdw+/ZtowdJREREZE56F0yff/457t27B39/f6hUKmzZsgUdOnRAdHQ0mjVrhlWrVpkiTiIiIiKz0btgOnXqFObOnYuQkBBcuHABT58+xciRI+Hj44Nx48YhNjbWFHESERERmY3eBVNWVhbc3NwAACdOnIBMJkO7du0AADKZDAJ3ZiYiIiIro3fB1KRJE8TGxiI3Nxc///wz2rRpA1tbWwDA4cOH0aRJE2PHSERERGRWehdM4eHh2LBhA9q3b48HDx5gzJgxAIDXX38dhw8fxtixY40eJBEREZE56b2tQO/eveHm5obY2Fi0adMGgYGBAIDg4GBMnz4dISEhxo6RiIiIyKz0LpgmTpyIkSNHFtvRe+7cuUYLioiIiMiS6D0kd+7cOUgkElPEQkRERGSR9C6YOnbsiP3790Mul5siHiIiIiKLo/eQnK2tLX766Sf8+uuvaNiwIWrVqqVxXyQSYceOHUYLkIiIiMjc9C6YEhMTERQUpP666L5L3IeJiIiIrI3eBdPOnTtNEQcRERGRxdK7YCqQnp6O2NhYJCUloVevXkhLS0PTpk0hEomMGR8RERGR2RlUMG3atAmbN2+GXC6HSCSCv78/1qxZg7S0NGzfvh1OTk7GjpOIiIjIbPReJbdr1y6sX78eY8aMwb59+9RzlkaNGoUHDx5g7dq1Rg+SiIiIyJz0Lph27tyJCRMm4N1338XLL7+svh4SEoIZM2bg+PHjRg2QiIiIyNz0LpgeP36MNm3alHjP3d0dT58+LXdQRERERJZE74KpXr16iIuLK/HelStXUK9evXIHRURERGRJ9J70PXToUKxfvx52dnbo2rUrACArKwu//PILNm/ejDFjxujVXlpaGlavXo3ff/8dmZmZ8Pb2xsyZMxEcHAwAmD9/PqKiojReU7duXcTExOgbOhEREZFB9C6Yxo8fj4cPH2LlypVYuXIlAGDkyJEAgH79+iE8PFyv9t577z2kpKRg9erVcHFxwZ49ezB27FhERUXBw8MDN2/exMSJExEWFqZ+Dc+yIyIiooqkd8EkEomwZMkSjBkzBmfPnkVaWhqqV6+ONm3awNPTU6+2EhIS8J///AfffvstWrZsCQBYuHAhYmJicPToUUydOhV37tzB5MmT4erqqm+oREREREZh8MaVTZs2BQBkZGTAxcUFjRo10rsNZ2dnbNmyBS1atFBfE4lEEAQB6enpiI+PR05ODjw8PAwNk4iIiKjcDCqYdu/ejU2bNiElJUV9rX79+pg5cyZ69+6tcztOTk7o0qWLxrWffvoJf/75Jzp16oRbt26pD/ONiYmBWCxGly5dMGPGDFSvXt2Q0ImIiIj0pnfBtHv3bnz88cfo3r07XnnlFdSqVQtPnz7Fzz//jJkzZ0Imk6FHjx4GBXP+/HksWLAA3bt3R2hoKNatWwexWIwGDRogMjISCQkJ+Oyzz3Dr1i3s2LEDYrHei/zUpFLDX1uURCLW+Le1qip5AszVWjFX68RcrZOl5SoSCrbq1tErr7yCTp06YdGiRcXuLVq0CJcvX8b333+vdyDHjh3DrFmzEBAQgM2bN8POzg6CIOD58+caR61cuHABw4YNw759+xAQEKD3+wCAIAg8846IiIh0pncP05MnT9C9e/cS7/Xq1QuHDh3SO4hdu3Zh6dKl6NmzJ1auXAmZTAYgfz5T0XPpvLy8AACJiYkGF0wqlYCMjCyDXlsSiUQMJyd7ZGRkQ6lUGa1dS1NV8gSYq7VirtaJuVqnork6OdmbtbdJ74LJz88PJ0+eRMeOHYvdi4uLg7e3t17t7dmzBx9//DFGjBiBBQsWaAyzzZw5E2lpadi2bZv62uXLlwEAzZo10zd0DQqF8b/RlEqVSdq1NFUlT4C5Wivmap2Yq3WylFz1LpgmTZqE9957D5mZmejfvz/q1KmDtLQ0HD9+HF9//TUWLFiAc+fOqZ9v3bp1qW3dv38fn376KXr27Inw8HCNSeR2dnbo27cvJk2ahE2bNqFPnz64f/8+lixZgr59+3LlHBEREVUYvecw+fj4/PPiQvOACpopuFYwT+j69eulthUZGYk1a9aUeG/QoEFYvnw5fvnlF0RGRuLevXuoXr06+vXrhxkzZsDW1lafsDUolSo8e/bC4NcXJZWK4excDampLyyiCjaVqpInwFytFXO1TszVOhXN1cWlWuUakvvmm2+M9uYTJ07ExIkTy3ymV69e6NWrl9Hek4iIiEhfOhVMW7ZsQefOneHj44M2bdqYOiYiIiIii6JTwXThwgVERkaiWrVq6Ny5Mzp37oyOHTvC0dHR1PERERERmZ1OBVNERATy8vLwxx9/4OTJk/jiiy8wc+ZMBAUFISQkRN37RERERGSNdJ7DZGNjg44dO6Jjx46YN28eHjx4gJiYGMTExGDTpk2oXr26uvfplVdeMWXMRERERBXK4MN3GzVqhOHDh2P48OHIzc3F2bNnceLECaxatYoFExEREVkVo6zPu3HjBrKzszF9+nT88ssvxmiSiIiIyGLoXTAlJydj5MiR2LhxI4D8bQaGDRuG6dOno1evXrhz547RgyQiyySIRMhSqPA0MxdZChUEntFIRFZK74Lp888/x7179+Dv7w+VSoUtW7agQ4cOiI6OhoeHB1asWGGKOInIwihFImw4eAlTV/6OORtOYerK37Eh6hKULJqIyArpXTCdOnUKc+fORUhICC5cuICnT59i5MiR8PHxwbhx43D+/HlTxElEFkQQiRBx8BLibiVrXI+7mYyIqEvsaSIiq6N3wZSVlQU3NzcAwIkTJyCTydCuXTsAgEwmg54nrRBRJZSdpyxWLBWIu5mM7DxlBUdERGRaehdMTZo0QWxsLHJzc/Hzzz+jTZs26nPdDh8+jCZNmhg7RiKyMFlyRbnuExFVNnoXTOHh4diwYQPat2+PBw8eYMyYMQCA119/HYcPH8bYsWONHiQRWRYHu7J3JNF2n4iostH7p1rv3r1Rt25dnD9/Hm3atEFgYCAAIDg4GNOnT0dISIixYyQiC2NvI0GQtyvibhYflgvydoW9jQTg8DwRWRGDfg1s1aoVWrVqBQDIycmBTCbD3LlzjRoYEVkukSBg8mB/RERd0iiagrxdMXmwP0QslojIyhhUMN27dw/r1q3Df//7X2RmZmL//v3Yv38/PDw8MGLECGPHSEQWSCIImDrYH9l5SmTJFXCwk8LeRsJiiYiskt5zmK5fv46hQ4fi6tWr6Nevn3pVnI2NDT799FN8//33Rg+SiCyTSBDgIBWjtqMMDlIxiyUislp69zB99tlnaNGiBbZv3w4A2L17NwBg4cKFkMvl+OabbzBo0CDjRklERERkRnr3MF24cAGjR4+GVCqFqMjmdL1790Z8fLyxYiMiIiKyCHoXTLa2tpDL5SXeS0tLg0wmK3dQRERERJZE74KpY8eOWLduHRITE9XXRCIRXrx4ge3bt6NDhw5GDZCIiIjI3PSewzR79mwMGzYMr776Knx8fCASibB8+XLcv38fgiBg9erVpoiTiIiIyGz07mGqV68eDh06hFGjRkEQBLz00kvIyspC3759ERUVhUaNGpkiTiIiIiKzMWgfJmdnZ/zrX/8ydixEREREFsmggun58+c4c+YMsrKy1PswFTZw4MDyxkVERERkMfQumE6cOIEZM2YgOzu7xPsikYgFExEREVkVvQum1atXw93dHfPnz0fdunUhFus9DYqIiIioUtG7YLp37x4iIiIQHBxsiniIzEoQifLPRsvMxYs8Feyk/IWAiIgMKJjq16+PzMxMU8RCZFZKkQgRBy8h7lay+lqQtysmD/aHhGekERFVaXr/+hweHo6NGzfi4cOHpoiHyCyEEoolAIi7mYyIqEsQihwDREREVYvePUxHjhzBkydP0LNnT7i4uMDOzk7jvkgkwrFjx4wWIFFFyM5TFiuWCsTdTEZ2nhIOHJ4jIqqy9C6Y3Nzc4ObmZopYiMwmS67Qet/BkeckEhFVVXoXTMuWLTNFHERm5WBX9v8K2u4TEZF1M3iMIT09HYmJiXj8+HGxf/SRlpaGRYsWoXPnzmjZsiXeeustxMbGqu9fv34dYWFhCAwMRNeuXbFt2zZDQyYqlb2NBEHeriXeC/J2hb2NpIIjIiIiS6L3r83x8fGYN28eLl68WOoz169f17m99957DykpKVi9ejVcXFywZ88ejB07FlFRUXBxccGYMWPQo0cPfPTRR7hw4QI++ugj1KxZE0OGDNE3dKJSiQQBkwf7IyLqEuJuFl8lJ+IqOSKiKk3vgunjjz9GfHw8pk6dCjc3t3JtXJmQkID//Oc/+Pbbb9GyZUsAwMKFCxETE4OjR4/Czs4OMpkMixcvhlQqhYeHBxISEvDll1+yYCKjkwgCpg72z9+HSa5A9Woy2EnFEJQqc4dGRERmpnfBFBsbi6VLl6Jv377lfnNnZ2ds2bIFLVq0UF8TiUQQBAHp6em4cuUKWrduDan0nzDbtWuHzZs3IyUlBbVq1Sp3DESFiQQBDlIxnGrawdm5GlJTX6Ds6eBERFQV6F0wOTo6okaNGkZ5cycnJ3Tp0kXj2k8//YQ///wTnTp1wpo1a+Dl5aVxv06dOgCAx48fl6tgkhpxibhEItb4t7WqKnkCzNVaMVfrxFytk6XlqnfBNGDAAOzevRudOnWCyMib+Z0/fx4LFixA9+7dERoaimXLlkEm01zKbWtrCwDIyckx+H3EYhGcnauVK9aSODnZG71NS1RV8gSYq7VirtaJuVonS8lV74LJ3t4e58+fR8+ePeHn51fixpWffvqp3oEcO3YMs2bNQkBAAFavXg0AsLOzQ25ursZzBYWSg4OD3u9RQKUSkJGRZfDri5JIxHByskdGRjaUVjzfparkCTBXa8VcrRNztU5Fc3Vysjdrb5PeBdP333+P6tWrQ6VSlbhSzpBep127dmHp0qXo2bMnVq5cqe5VcnNzQ1JSksazBV/XrVtX7/cpTKEw/jeaUqkySbuWpqrkCTBXa8VcrRNztU6WkqveBdPx48eNGsCePXvw8ccfY8SIEViwYIHGqrvWrVvju+++g1KphESSvw/O6dOn0bRpU074JiIiogpjcN9WRkYGYmJi8MMPP+D06dPIzMzUu4379+/j008/Rc+ePREeHo6UlBQkJycjOTkZz58/x5AhQ5CZmYmFCxfizp07iIqKwo4dOxAeHm5o2ERERER6M+i8hy1btiAiIgJyuVx9zcbGBhMnTsSUKVN0bueXX35BXl4efv31V/z6668a9wYNGoTly5dj69atWLp0KQYNGgRXV1fMmTMHgwYNMiRsIiIiIoPoXTAdPHgQq1evxtChQ9G/f3/Url0bycnJOHToEDZs2ID69evrXNBMnDgREydOLPMZf39/7N27V98wiYiIiIxG74Lp66+/xltvvYUPP/xQfc3d3R1t27aFnZ0dvvnmG/YAERERkVXRew5TQkICevToUeK97t274969e+UOioiIiMiS6F0w1a1bFw8fPizx3oMHD+Do6FjuoIiIiIgsid4FU2hoKNatW4cLFy5oXI+Li8P69esRGhpqrNiIqhxBJEKWQoWnmbnIUqggGHk3fSIiMozec5imTZuG//73v3jrrbdQv359uLq6Ijk5GY8fP4aHhwdmzpxpijiJrJ5SJELEwUuIu5Wsvhbk7YrJg/0hEQQzRkZERHr3MDk6OuLAgQP44IMP4O/vDwcHB/j7++ODDz7AgQMHULNmTROESWTdhBKKJQCIu5mMiKhL7GkiIjIzvXuYoqOj0aVLF7z99tt4++23Ne4lJydj586dGD9+vNECJKoKsvOUxYqlAnE3k5Gdp4SD1DJO7CYiqor0/gk8f/58PHjwoMR7169fx7p168odFFFVkyVXlOs+ERGZlk49TOHh4bhz5w4AQBAETJkyRX1AbmEpKSl46aWXjBshURXgYFf2/4ra7hMRkWnpXDDt378fAPD999/D19cXLi4uGs+IxWI4OTlh8ODBxo+SyMrZ20gQ5O2KuJvFh+WCvF1hbyMBOPGbiMhsdCqYWrZsiZYtW6q/njx5Mho1amSyoIiqGpEgYPJgf0REXdIomgpWyYlYLBERmZXe/fzLli0zRRxEVZ5EEDB1sD+y85TIkivgYCeFvY2ExRIRkQXgxAgiCyISBDhIxXBw/HuOIIslIiKLwHXKVCG4gzUREVVm7GEik+MO1kREVNmxh4lMijtYExGRNWDBRCalyw7WRERElk7vgql58+a4dOlSifcuXryI5s2blzsosh7cwZqIiKyB3gXTwIED4ezsXOI9FxcXDBw4sLwxkRXhDta64aR4IiLLZtR9mBo1asR9mkgDd7DWjpPiiYgsn1HmMCUnJ+Pq1atQKjkfhTQV7GAd5O2qcZ07WOcz1qR49lAREZmW3j1ML168wCeffAJfX1+MGDECP/74I+bMmQOlUokmTZpg+/btqFevnilipUqKO1iXTpdJ8Q7Ssn+vYQ8VEZHp6d3DtHLlSvzyyy/qeUyrVq2Cj48PNmzYAKlUipUrVxo9SKr8Cnawru0og4NUzGLpb+WdFM9tG4iIKobePUy//fYb5s2bh759++L69et49OgR5syZg+7du0OhUODDDz80RZxEVqm8k+KN0UNFRETa6f2TNC0tDe7u7gCA33//HVKpFB07dgQA1KhRAzk5OcaNkMiKFUyKL4l6UnwZqvq2DZy7RUQVRe8epgYNGuDmzZsIDg7G//3f/yEwMBCOjo4AgBMnTqBhw4ZGD5LIWhVMio+IuqSxklDXSfFVedsGzt0iooqk90/Tt99+G8uXL8euXbtw//59rF69GgAwbdo0HDt2DO+//77RgySyZuWZFK/Ltg0CYHUT7rXN3ZrKFZhEZGR6F0wjRoyAi4sL/vjjD0ybNg29e/fOb0gqxeLFizFs2DCjB0lk7QomxTs4yvIv6Phhr62HSgCw0Qp7YTh3i4gqmkH99X369EGfPn00rq1Zs8YoARFVZoJIVOG9OaX2UAFYb6W9MLrM3VIXn0RERmBQwXT//n2cOHECWVlZUKlUGvdEIhGmTJlilOCIKhNzzqkpqYcqS6Gy2l6Yqjx3i4jMQ++fKtHR0Zg/fz6EUj4AWDBRVWSJc2qsuReGR+4QUUXTu2DatGkTOnTogE8++QRubm4QcRkvkUXOqbHmXpjyri4kItKX3j8xHz9+jMWLF5vk+JOIiAicPn0aO3fuVF+bP38+oqKiNJ6rW7cuYmJijP7+RIayxN4ca++F4ZE7RFSR9C6YmjZtir/++svogXz99ddYt24dWrdurXH95s2bmDhxIsLCwtTXJJKyN/OjfOaYgFxVWWJvTlXohTF0dSERkb70/ik+c+ZMfPzxx2jQoAECAwNha2tbrgCePHmChQsX4vz582jatKnGPaVSiTt37mDy5MlwdS15N2QqGTf1q1iW2pvDXhgiIuPQe1LF0qVLkZKSgtGjRyMwMBDNmzfX+MfX11ev9q5evYoaNWrg8OHDCAgI0LgXHx+PnJwceHh46BtmlcYDWSteQW9O0WNOLKE3hwcfExGVn949TP379zdqAKGhoQgNDS3x3q1btyASibBjxw7ExMRALBajS5cumDFjBqpXr16u95UacQKuRCLW+Le5Zci1TUBWwclO/2FNS8vTlAzJVQpg+tAAvMhRIkueBwc7G1SzlUAiAgDLLVL592qdmKt1Yq7mo3fBNHXqVFPEUaLbt29DLBajQYMGiIyMREJCAj777DPcunULO3bsgFhs2B+iWCyCs3M1I0cLODnZG71NQyQlPCvzvjxXgcb1nAxu31LyrAiG5FrbBHFUBP69Wifmap2Ya8UzaCZqbm4uoqKicPbsWWRkZMDZ2RnBwcEYNGhQuec0FTZt2jSMHj0aTk75H+5eXl5wdXXFsGHDcPny5WJDeLpSqQRkZGQZLU6JRAwnJ3tkZGRDqVRpf4GJ2cnK/mu1k0mRmvpC73YtLU9TYq7WiblaJ+ZqnYrm6uRkb9beJr0LpoyMDIwcORI3btxA/fr14erqivv37+Po0aPYvXs39uzZU+7hsgIikUhdLBXw8vICACQmJhpcMAGAQmH8bzSlUmWSdvVlbyPWMgFZXK44LSXPisBcrRNztU7M1TpZSq56l2qrVq1CYmIidu3ahePHj2Pv3r04fvw4du3ahZSUFKxdu9Zowc2cORNjx47VuHb58mUAQLNmzYz2PtbGkicgExERVUZ69zD99ttvmDFjBoKDgzWuBwcHY/r06YiIiMD7779vlOD69u2LSZMmYdOmTejTpw/u37+PJUuWoG/fvlw5pwWXkxMRERmP3gXTixcv0KhRoxLvNWrUCGlpaeWNSa1bt25Yu3YtIiMjERkZierVq6Nfv36YMWOG0d7DmnFTPyIiIuPQu2Byd3fHv//9b3Ts2LHYvd9++w2NGzc2OJjly5cXu9arVy/06tXL4DaJiIiIykvvgmns2LF47733kJubi379+qF27dp4+vQpjhw5gv3792Px4sUmCJOIiIjIfPQumHr37o34+HhERkZi//79AABBECCTyTBlyhQMGzbM6EESERERmZNB+zBNnjwZYWFhiIuLQ0ZGBmrUqIGAgADUqFHD2PGRleMBwUREVBkYfIS6k5MTunTpYsxYqIrhAcFERFRZ6FQwNW/eHHv37oW/vz98fHwgKuPwVpFIhGvXrhktQLJO2g4Insr9ooiIyILoVDBNmTIFdevWVf93WQUTkS6y87QdEKyEgxEPSC4JhwOJiEhXOhVMhQ/cnTZtmsmCoaojS67Qel+9f5QJcDiQiIj0YdCv8A8ePMCdO3cA5J8t99FHH2HixImIjo42ZmxkxRzsyq7Vtd0vD23DgQJ7UImIqAi9C6aYmBi89tprOHjwIADgww8/xL59+/DkyRPMnz9fvdUAUVnsbSTFzrorkH9AsMRk763LcCAREVFhehdMERER6NSpE6ZMmYLnz5/j119/xYQJE/D9999jwoQJ+Oabb0wRJ1kZcx4QrMtwIBERUWF6j3vcuHEDmzZtgqOjI3788UcolUr10SUdO3bEV199ZfQgyTpV9AHBBZO8bWVl916ZcjiQiIgqJ70/GWxtbaFQ5P8GfvLkSdSqVQs+Pj4AgKdPn8LJycm4EZJVq6gDggtP8n6jhxcCPF1x8XbxYTlTDwcSEVHlpHfB1KpVK2zfvh3p6en46aefMHjwYADAlStXsGHDBrRs2dLoQRKVR9FJ3odj7mJ2WDAAaBRNmsOBnPhNRET/0Ltgmj9/PsLDwzFr1iw0a9YMkyZNAgCEh4fDzs4Os2bNMnqQROVRdJK3PFeJFbti0b+zBwZ0dkc1OxtUs+c+TEREVDq9C6ZGjRrhhx9+QEpKCmrXrq2+vnHjRvj6+kImM93eOUSGKGkStzxXiX3HbgEAPp/aKX+TTBZLRERUCoP2YRKJRLC3t1d//dNPPyEuLg5//fWX0QIj6yWIRMhSqPA0MxdZCpXJ9z0y555PRERkHfT+pLh//z7Cw8PRu3dvzJgxA2vWrMGWLVsgCAK++OILbN++Ha1atTJFrGQFzLHDdsGeT3E3y5jkbYT35lErRETWS+8eppUrV0IikaB79+7Iy8vDt99+i9deew2xsbEICQnBF198YYIwyRqYa4ftitjzSSkSYcPBS5i68nfM2XAKU1f+jg1Rl6DkruFERFZB7x6mc+fOYenSpfDz88Pp06fx/PlzDBs2DI6OjnjzzTd51hyVypwH7ppyzydtheBUE2/ESUREpqd3wZSXl4caNWoAAE6cOAF7e3v1EJxSqYRUyvkg9I/Cw1TaagZTH7hrqj2fzFkIEhFRxdC7uvH29sb//d//oUmTJvjxxx/RqVMnSKVS5OXlYffu3fDy8jJFnFQJFZ2vtGhs2zKfr6yTr3U5asWUhSAREZme3r/2Tp8+HQcOHECXLl2Qnp6O8ePHAwB69eqFM2fOYMqUKUYPkiqfkoapbiSkIsDTPAfumhJX4RERWT+9f5J36NABR44cweXLlxEQEIAGDRoAAEaNGoV27drB29vb6EFS5VPSMJVuO2xXPhW1Co+IiMzHoF99GzVqhEaNGmlcGzVqlFECIutQ2maRBTtsv9PPFzm5SqtYfl+wCi8i6pJG0VTZC0EiIvqHTgXTyJEj8eGHH8LDwwMjR44s81mRSIQdO3YYJTiqvEobhirYYbtzYH3UNvGBuxXJlKvwiIjI/HSawyQU+qEvCEKZ/6hUKpMFS5VHwTBVSSrzfKXCiu5YDgAOUjFqO8rgIBWzWCIisiI69TDt3LmzxP8mKo21D1OZY8dyIiIyHy7fIZOx1mEqblRJRFT16F0wPXr0CB9//DH+97//4fnz58Xui0QiXLt2zSjBUeVnqs0izYkbVRIRVT16F0zvv/8+Lly4gCFDhqBmzZomCInIsnGjSiKiqkfvgunChQv44IMPMHjwYFPEQ2TxuFElEVHVo/e4gaurq/osOWOLiIjAiBEjNK5dv34dYWFhCAwMRNeuXbFt2zaTvDeRrqrCCkAiItKkd8EUHh6OjRs34tGjR0YN5Ouvv8a6des0rqWmpmLMmDFo0qQJDh48iGnTpmHt2rU4ePCgUd+bSB8FKwCLFk3WsgKQiIiK03vsoGvXrti6dSt69OgBFxcX2NnZadwXiUQ4duyYzu09efIECxcuxPnz59G0aVONe/v27YNMJsPixYshlUrh4eGBhIQEfPnllxgyZIi+oVMlJohEFrXazlpXABIRUcn0Lpjmz5+PBw8eoGPHjnB1LXlYQh9Xr15FjRo1cPjw4WI9V7GxsWjdujWk0n/CbNeuHTZv3oyUlBTUqlWr3O9Pls9S9zyyxhWARERUMr0Lpj/++AOLFi3CG2+8YZQAQkNDERoaWuK9xMREeHl5aVyrU6cOAODx48csmKoA7nlERESWQO+CycnJCfXr1zdFLMXI5XLIZJrLs21tbQEAOTk55WpbasR9ciQSsca/rZU58syQa9vzSAUnO+NPsq4qf6cAc7VWzNU6MVfz0btgevvtt7FlyxYEBgbC0dHRFDGp2dnZITc3V+NaQaHk4OBgcLtisQjOztXKFVtJnJzsjd6mJarIPJMSnpV5X56rQON6TiZ7/6rydwowV2vFXK0Tc614ehdMjx8/xrVr19CpUye4u7sXK5pEIhF27NhhlODc3NyQlJSkca3g67p16xrcrkolICMjq1yxFSaRiOHkZI+MjGwoldZ7+LA58rSTlf0taieTIjX1hdHft6r8nQLM1VoxV+tUlXN1crI3a2+T3gXT/fv30bx5c/XXQpH5I0W/Lo/WrVvju+++g1KphESSP+xy+vRpNG3atNzzlxQK43+jKZUqk7RraSoyT3sbMYK8XTUO8C2Qv+eR2KSxGDNXS1vpV1RV+f4FmKu1Yq7WyVJy1btg2rlzpyniKNGQIUOwdetWLFy4EOPGjcOlS5ewY8cOfPTRRxUWA5lXwZ5HEVGXNIqmyrbnkaWu9CMiIt0YfIZDeno6YmNjkZSUhF69eiEtLQ1NmzaFSCQyWnC1atXC1q1bsXTpUgwaNAiurq6YM2cOBg0aZLT3IMtXmfc8EkQi5KkEbI7iSj8iosrMoIJp06ZN2Lx5M+RyOUQiEfz9/bFmzRqkpaVh+/btcHIybBLu8uXLi13z9/fH3r17DWqPLJ+uw1Sm3POopBiMoaBXqV+Iu5aVfko4GHHVJhERGZ/eBdOuXbuwfv16hIeHo1u3bur9mEaNGoVZs2Zh7dq1+OCDD4weKFkfSximKiuG8ii8f1Svdk3KfDZLrvinECQiIouk96+1O3fuxIQJE/Duu+/i5ZdfVl8PCQnBjBkzcPz4caMGSNZJ24aUghGHdg2N4c/EDDzPURoUS3beP/tHyWzK/t/Mwc7gkXEiIqogehdMjx8/Rps2bUq85+7ujqdPn5Y7KKp4gkiELIUKTzNzkaVQGbVgKantwgVFUXE3k5GZozB6HEVpi+HJsyxMWfFvbIi6BKWecWTJFer/vpGQigDPko8Ryl/pZ/yNN4mIyLj0/tW2Xr16iIuLQ4cOHYrdu3LlCurVq2eUwKjimHJorLS23+zpXebr/nqaheXfnDPpEF3hoqYkuXn5y1gNmZxduNfocMxdzA4LBgBcvF15V/oREVVlehdMQ4cOxfr162FnZ4euXbsCALKysvDLL79g8+bNGDNmjLFjJBMy5VltZbU9pJtnma8tGMYy5UoybUNhhYfS9J2cbW8jUe8fJc9VYsWuWPTv7IEBnd0hAKjr7AB7GzGLpUrA0vfPIqKKoXfBNH78eDx8+BArV67EypUrAQAjR44EAPTr1w/h4eHGjZBMStuwVHlWcJXV9qU7T0vdkDLA0xU3ElKNFkdpChc1RQV6ueL2wzSNa/pMzi66f5Q8V4l9x25p9pjxQ9fiWcLCBCKyDHoXTCKRCEuWLME777yDM2fOIC0tDdWrV0ebNm3g6Vl2rwFZHm3DUuVZwVVW24dj7mLNjC7YcuiyRsES4OmK/iHuWLEr1mhxlKa0TTEDPF3xRncv5OQpYSeTQJ6rBKD/5OzKvH+UNlWh18WUva9EVPkYvDynSZMmaNKkiRFDofLS5UOs6DNO1WQaRUFR5VnBVdZr5blKqASVuqB4ka3AC3kebiSkYsWu2GLxmGolmQRAR//66NfJHbl5KshsxLiRkIol287Au7EL+nf2UPcM2dtI9O4VMuX+Ueaib69LZS2uTNn7SkSVD9czWwldPsRKe2bR2HZYsu1MsSLF0CKhQFlDXkHerrCTStQFhb2TLb47drOMM+MMj6MsWXlKbNh/scR7F28nY0Bnd07OLkTfXpfKPKRlyt5XIqp8+OuRFdBlT6Oyntl//BbGDWihcd0YRULBkFeQt+aS+pLa1udZY9L2oVjNzgZTK8GHe0XRpdelgCXstVUe2no1uX8WUdXC/+OtgK4fYmU9M7ZfC2yY1dXowyb6zOMxx5wfbR961ext2LNUiD69LpV9SEtbD6mpej2JyDJZ7k8r0pkuH2Lan8mDg1SM2o4yOEiNu9y9YNhNl7b1eVYX2jbkLPhQLEmQtyuq2XJTycL06XXR5fvSkpmr15OILJNePUxXr17Fn3/+CS8vL3h4eBS7/+zZM8TExGDgwIHGio90YIyhA2scXtBl/kxpK+WCvF0x/Y0gSAQVSvpYr6wTmctLn14XaxjSsuaVjkSkH51+YmVmZmL69Ok4ffo0BEGASCRCz5498cknn8DJyUn93IMHDzB//nwWTBVMpw+xv/+7qgwv6DM5uaQPxWq2UtSuaY/U1BfF2q7ME5nLq6wCs2ivi7UMaVnjSkci0p9OQ3Lr1q3D9evXsWbNGkRHR2PSpEn4/fffMXz4cKSkpJg6RtKirKGDCQP9IFcoIQKsdnjBkLPqCk9OBooPBUpKmY9c2ScyG0NBgblhVld8PrUTNszqWuLEeA5pEZE10amH6fjx45gxYwZeffVVAICPjw86deqE8PBwjBs3Djt37oSjo6NJA6WyFe0lyVWocOnOU/xrzQnIc5UI8nbFlMH+Vje8YOhZdYYuCa/sE5mNRddeFw5pEZG10Okne0pKCl566SWNay1btsSmTZtw9+5dTJkyBQqFZU/grApEggB7Gwm+/b+beD/yv9h37JZ6b6W4m8nYGHUJAEw2uduYtE3WLnimtN6ePIWqzPYNnT9T2Scym4OxJ/ITEZmDTgVTo0aNcObMmWLXg4ODsWzZMvzxxx+YO3cuiyYLoO9QlCVSikTYcPASpq78HXM2nMLUlb9jQ9QlKIsUTbqcVVeSwvO69GUNE5mJiEh/OhVMw4cPx9atW/HJJ58gLi5O416fPn0wc+ZM/PDDD5gzZ45JgiTdWUIPiC69Q2W9Vtc5QtrOqpswwM/o82e0bUNgaCFGRESWTadfh4cNG4aMjAx8+eWXAICgoCCN++PGjYOjoyOWLVtm/AipRKUtazd3D4g+K8hKykGfOUL6nFVnrPkz+qwSIyIi66Hzp+f48eMxbtw4ZGZmlnj/zTffRI8ePXDixAmjBUclK6soMedSbn2W8htjsrY+Z9UZc0k4JzITEVU9ei3nEYlEqF69OtLT03Hjxg1cv34daWlp6vu1a9fGkCFDjB0jFaKtKDHm9gFFh9aUWl6q6/wpY03WNueydU5kJiKqWvQanzl9+jQiIiJw/vx5CIU+IFq1aoWJEyeiU6dORg+QNGkrSrL+HrIqbw9IaT1A094IKvWbRtdzxnSZrK1rDxl7e4iIqCLoXDB9/fXX+Oyzz1CvXj2EhYWhcePGkEgk+PPPP/Hbb79h/PjxmD17Nt555x1Txlvl6VqUlGsoSiTCxTtP0S/EHb3aNYHMRowbCak4HHMX6/fFYfrQgBJfpuv8KW2TtdfM6IIthy7rPEeIOzETEZGp6VQwXbp0CStWrMCIESMwe/Zs2NjYaNyfNWsWVq1ahVWrViE4OBj+/v4mCZYqZll7rgCcvPAYF2//U7AEeLpidlgwVuyKxYscJRykxVe+6Tp/SttkbSV7jYiIyMLoNIdpx44daN26NRYsWFCsWAIAsViM2bNno0OHDvjmm2+MHiT9w9TL2gWRCJujLmkUSwBw8XYyDp+8h/6dPZAlzyvxtbrOKSorhwBPV9yIfwagcmywqU15tlggIiLLoVN3xP/+9z/MnDlT63ODBw/G559/Xu6gqHSmXtZe1vyii7eTMaCzOxzsihfNBXSZUyQSBIQP8semg5eK9WL1D3HHil2xWDk9pNIfMVKVD+klIrI2OhVMT58+hZubm9bnXF1d8ezZs3IHRWUz5URnbXOkBADVbCUQlKWvZtNlTtHzFznwbuyMAZ3dkZunUs+TWrErtqAVZClUxfIrbf8pjRh1eMaQZ/WhzxYLFRUTEREZTqeCycXFBQ8fPkRwcHCZzz169AiuriUPtZBxmWqis7Y5UHWdHSARAeXdL9zeVop9x24Vu24nk2B2WDC2Hb6iUWy0fbkuxvZvgU1aemz06dUp69nyzgQz9JBe9koREVkmncY82rZti2+//VZjK4GiBEHAt99+iw4dOhgtODJMeebNaJsj5VLDzigxlvY+/Tt74PDJe8WKjcb1amDjgbKPTNHnWBVtz2rbc0obQ46o0Sd+IiKqWDoVTGPHjsXVq1fx/vvvQy6XF7svl8sxf/583LhxA6NGjTJ6kKQ7XQ+uLU2ZE7eH+KO6g8wocZb2Pv7NahebcA4APo2dS7wO/NNjo8/Bw9qefZFTvkOKDVnNaA0HJxMRWSudRh68vb2xdOlSLFy4EMeOHUP79u3RsGFDSKVSPHr0CCdPnkRWVhaWL18ODw8PU8dcpZU1v6U882YKK22OlI3YuD0cJb1PaT0zuXll7wCuy6HChY9V0d4DVPJKQF0ZckSNrntsERFRxdN5qsaAAQPg6emJyMhInDp1Sn2mnL29PUJDQxEeHg4vLy+TBPno0SOEhoYWu/7JJ5/g9ddfN8l7WiJt81sMnTdTkpLnSBl/SKjY+5TSMyOzKTtuXfafKvyM9h6g0lcC6sKQ1YzmPjiZiIhKp9dPYF9fX6xbtw6CICAtLQ2CIMDFxcVUsandvHkTtra2OHbsGESFhpaqV69u8ve2FLr0HpXUQ2Enk6B/Zw/4NHbG86w8wMFGr1VXhXu0qtnbQJqVW64c/mlLClsbKeS5Co1erNJ6Zm4kpCLA07XEYbnC+0/p2qujrQeomm359rMC9F/NaM6Dk4mIqGx6/8qalZUFBwcHODs7q69dvHgRAQElH5dhDLdu3ULTpk1Rp04dk72HpdOp96hID0TBirPDJ+9prEjTddVVmT1aesZfuK3CcRUugAraLqlnJuGvdEwZ6o9NWnpsdO3V0dYDJDFSZ5o+qxlNvccWEREZTueC6fr165g/fz5eeeUVTJ48WX09PT0db731Fpo2bYp169aZZA7TzZs30axZM6O3W5noMr+lVnVbjR6KghVnBUVJ4d6mP5MyUdfZAfY2Je+ibaz5UCW1VTSuwm1vOHAJ014PKLVnRluPjT69OhJBwOQhAXjyLAuZWXnqvaC2Hr6Ccf1b6JSbsfEwYSIiy6RTwfTgwQOMHj0aDg4OxQoXmUyGBQsWYNu2bXj77bdx6NAhnTa51MetW7fg6uqKt99+G/Hx8WjcuDEmT56MkJAQg9uUGnEXaYlErPFvU9A2p8bBzgY2EpFGD4VPY2d1z5K23ibbIl0qGXJtPVoqONnp1s9UtK3CcRV18XYyEp9loUEtBzjZSeGk0WuWH6ONpOTrhenyjFIAIvZfLDHPXIUKs8OCTfp3WhZd4jeWivj+tRTM1ToxV+tkabnqVDBt2bIFzs7O+O6771CzZk2Ne/b29ggLC8Nrr72GoUOHIjIyEosXLzZagLm5uYiPj4e9vT3mzJkDBwcHHD58GOPHj8dXX32F9u3b692mWCyCs3M1o8VYwMnJ3uhtFpBm5ZY5v8Wlhp16yf/ssGCkZ+YgPfOf+UZl9epERF3C7LBgjS0DkhLK3rFdnqtA43pOOsVetC1tK94ys/Igr6FCwzqmnaP2MOl5mUVhemaOyWOwJKb8/rU0zNU6MVfrZCm56lQwnT59GhMnTixWLBVWq1YtjBkzBrt37zZWbADye7DOnTsHqVQKmSz/A71Fixa4e/cutm3bZlDBpFIJyMjIMlqMEokYTk72yMjIhrKMI0PKq9T5LUP8ocjJQ2rOP0vhq9mIobT/p1eqrF6duJvJeJYuh6LQ6+1kZX9r2MmkSE19ASC/p+ZFjhJZ8jxUs7eBg0yiMQeoaFvaVrzJbMR4/iJX3b6pPH9R9gT2F9l5Jv87tQQV9f1rCZirdWKu1qlork5O9mbtbdKpYEpOTkbjxo21Pufl5YXExMRyB1WUg4NDie916tQpg9tUKIz/jaZUqkzSbgEJUPL8FpUAhar4HBd7G7G6V0r7PkZ5cJD+U+UUfm1R+Su2xFAoVDod5VG0rRsJqQjyci2xdyfA0xU3ElLRObC+Sf8sAe3L9KvZ25j879SSKJUq5CmFKjF/qqr9vTJX68NcK55OpZqLiwuSkpK0Pvfs2bMye6EMcePGDQQFBSE2Nlbj+pUrV6rkRPCCVVe1HWVwkGpO2C56JIoIUO+mre8+Rtp2/BYJAiAS4eKdp+gX4o55I1tj0di2eKOHF67ff6ZxlEfRtg7H3EXYa80R4KnZdoCnK/qHuCPhr3T1NgGmpO0YmBqOtga3XZ7jacwlRymUa5d4IiJrplMPU+vWrREVFYU+ffqU+Vx0dDSaN29ulMAKeHl5wdPTEx999BE+/PBDODs7Y9++fbhw4QIOHDhg1PeqbDR3/bbBjYQUbD10BfLc/CM0grxdMWWwP6YO9keeStB7j5/iK7Zs4FLDDoqcPChUAnIF4OSFxxrzogI8XTE7LBgrdsVqbJRZtC17WzGmvl58hdr/nY3HuP4tKqRXo8xl/H8fA1N4mFNXlfEA3edZuUZbFUlEZI1EQlkn6v7t8uXLeOuttxAWFoZ//etfsLXV/M07NzcXa9aswddff40tW7aUa/VaSZ49e4aVK1ciJiYGGRkZ8PX1xaxZsxAcHGxQe0qlCs+eGW9+jFQqhrNzNaSmvqiwbsOSPpQLemhW7IrVKJoKPuyUIlGpe/zkKpR4kV1oGAZAVqGhGQcbCURiEeQKFZ6/yP27QHumUaAVjuNldxd08KsPQChzeKeso14qSkkx2EhEBv2dCn+f5VfScGPhvwtLIpWK8SJPhUmfHS/1mQ2zuuq8S7wlM8f/q+bCXK1TVc7VxaWa5c9h8vPzw/z58/Hpp5/i0KFD6rPklEolHj9+jLNnzyI1NRXvvvuu0YslIH9I8NNPPzV6u5VVaXskFfT0zAoLhliUvxpNZiNGnkqATFTyHj+2Mim2Rl/G2WtP1O0Eebvi9VAvLNl2BvJcJexkEiwa2w77f7tVrEAr6E0qXDTdTHiGCQNbYOuhK1p7WfTZ2NFUjHkMjDGPp6lIL7LL7knjOXZEVNXpvHHl8OHD4ePjg23btuG3335DTk4OAKBatWro1KkT3nnnHZPu9k3/KOtD+eLtZLze3RPvR/5XfS3I2xXhg/zx/EUO7G3ze1AcpOL83pADxfchiruZDJXq760IYu5iVlgw9v12CxdKKdD6d/bQWIHXv7MHvjx0pdjzVWF4p7IeoFvNXts+XzzHjoiqNr1+CrZq1QqtWrUCAKSmpkIsFqNGjRomCYxKp+1DOTNLs7cg7mYyNh28BO+/txYo6OnJ0VJ4DejsDu+wYNjKJMWKn6LPFaZtCwNL7WUxhsp6gG4NR1u957gREVUlBn9qOTs7s1gyE20fui5OtrCTaa4yu3g7f+dvIL9o2Xr4Cl5oKbykEjEOn7xXrAArquiWBdo+VrUVfJWZtpV3FbH6zxDVHWSlr4q04h5BIiJdWeavu1Smsk61D/B0RULi8xLnFhUubDwa1oStrOwP7+rVZCX2IBVVeMuCIG9X1HEuvm9WYcboZbGEyeIlqcwH6NpKRDzHjoioFCyYKqHSPpQLr5LzaeKCTyd3RNKzbPWS/YJeJzuZBJ0C6uPq/WcI8HQtdlwKkP8Br1Tmf1DeSEgt9bkAT1c0rOOIz6d2Un/AFrzeVMM7lr5svzIfoGsJk/CJiCwRC6ZKSiIICB/oh8dPX6hXw91ISFX3Kl24lYz+Ie5Y/s05APmFTduX3VDTUYZpbwThWUYOth26gtlh+VszFN1LKXyQPxKf5m+9cDjmbonPBXm5om8nd+QplKhd5APWVL0spa0QtLQJ5Sw8iIisCwumSizjRS6WbDtb6v3CQ3AXbyfjmx+BqW8E4fDJe3itfRPIc5VYsSsW/Tt7YEBnd43CKyMzB261HNQ9RUWfc3SwUb9+yYT2sC+y8stUvSyVddk+ERFVbiyYKjFtc4GKHody8XYyRvf11ZiXJM9VlriirXNgA8hEmj1FBc8VDP2t/Ls3q7Q4TNHLUlmX7RMRUeXGgqkS0zb5+0ZCarHrOTn5k8DLmpdUcLguBAESQcCUIQFILHKEScHQX0UvOa+sy/aJiKhy49iFBSl8YOuLPBWyFAKylSUf3CqIRJArlJgwwK/YUvCCHqDDMXeLvc7BPr+gOBxzF/1D3IsdgFvSPCOxSoW6zvb45Ww8lmw7i33HbqmLpYpe+VVZl+0TEVHlxl/HLURZZ8MVHEhbsAKs8LN2Mgn6d/bAkG6ekEnF6jPeim4pAOQXFA620jLnJbm5OECsKn4+kUQQMH1oQKGz5Myz8qsyL9snIqLKiwWTBdB2Npx3Y2f1CjAAJT6bm6dETp4S9nZS+DdzRYBnbZy9qnk+3OTB/hCrVCXOSyp8vzQSEdCwTvV/Dn0sVJxU5L5IlXnZPhERVU4smCyAtrPhBnR2x75jt5Cdl99jVPCsnUyC2WHBOHzynsbE7UBPV0wc7IeBXTwgEYuLFRQF85KychR4kZ0HR3sb2NtKyyyWymKOfZG4bJ+IiCoSCyYLULDyq2B4zaexs8YSf8XfG0gWXSHWv7MHDp+8V2zi9oXbydgUdRkDOrvjyKnbmDIkANm5CmTJFahmL4WNVIJNRQ7dNbTAqSz7IhEREZUHCyYL4GAnLbW3KMDTFV2CGsBOJoGdrRRCoeKjrENuL95Oxth+L+P6/Wd4kpqFhZv+CwB4o4cXbiakFiuyrt9/hot3nsKnsQuy5Hk6D3NxXyQiIqoKWDBZAHsbCcYNaFFib9HF28n48tAVjO3fAqcuPgYA9XYARQ+9LSozOw/9O3uojzgBSi6yChdrG/ZfVF/XpdeJ+yIREVFVwF/9LYBIEODd2KXEPZEA4MKtZDRrWBOHY+7icMxdjOzdHAGersU2pizK3k4Kn8bOqF7tn4KlpCKrtKG9gmG1krY1KMB9kYiIqCpgwWRGhfddyszKLfPZ5LQsyHOVkOcq8fxFLrwbO6OOswOCvErekyjA0xUp6XIIAjR6mEoqsnwaO5darBUMqwGAUgAeJj1HYpocWYr8/aEcuC8SERFVAfz1vwKUtOReALCx0GTpRWPbltlGHWcHLBrbFjcSUpGrUGHfsVv4vzPx+GxqCCIOXtI8FNfbFeMH+CE5NRuuzvbIVSjVr739MK3YDt/ahvaycxSwtbFFxP6SJ4pPGeyPjdwXiYiIrBgLJhMrbcn966FeuB7/TH2trKNKAjxd8TRdDrEI8H7JGXVc7PFWL298/+87+M+lRxjW0xNj+voiJ1eJPKUKl+48xXtfnMjfjdvLFWGvNce6vXEY/mpzeDaqiQ5+9bH9yBV1gaNtaK+6g0zrSjjui0RERNaMBZMJlbXkXqXKnztUMAH7cMxdzA4LBgCNoinA0xXjB7bAjqPXcO56oY0ovVwxOywY6/fFoUm9Gnic/AInLzwuPg/pVjJUArBoXDvs+OE6Nh64WGx3cKdqslLPpAvydoVCKei0Eo77IhERkbViwWRCumxIWUCeq1QfVTKqjy/kOQrIcxVQCShWLAH/FEKvtGuCz3fGYkl4+1LnIV28nYwsuaf6vjxXiX3HbmHfsVsI8nbFtMH+ZR43kvo8p8w8uRKOiIisHQsmE9K25L7w3KHCm1bKc/Jf9/nOWHw6uSNe69AE3Vu/pN7I8nDMXchzlbh4Oxlj+vrCvX4NKBRl9+hkZuWVeD3uZjKy/u4hKm1YjSvhiIioquMnnQlpKyRkNmK80cMLPo2dYSfL35Ty4p2nOBxzF/NGtsbssGB88+N1XCg8/8nLFSumd0ZKWjauxT+DPEeBn07Ha/RWlfZepSnoISrtuBH7v1fClTZkZ28j4RAcERFZNRZMJmQrkxabyF3Qk+TfrDakEjECmtVWF0nyXCUCPPPnJgmCUPLeSLeSsfXQFXg3dsbNhFR0CWqAl91dULO6LYK8XEscAgzycsWNhNRS49RW2IkEocwhO07uJiIia8eCyUQEkQhboy+jf0h+z8/F28llHn8yOywYK3bFqguk4a96lzknqeBA3i8PXYFvUxecu/4EI3v7om8nOUQiqIfuvBu7IOy15vju/26W2JauPUQSQcD0oQGQK1R4/iKXK+GIiKhKYcFkZAV7Lr3IVqBX+ya4/TAN/p61MLyXN+xspfjqyNUSjz8B/lk1d/F2Mob18CrzfQrmP92If4bxA1pgS/QVfPvLP0VRkLcrvnivK0QQ8DwrF2MHtIBCpSpXD5FEBDSsUx2pqS+gUKg4DEdERFUGCyYjylEKJe65NH6AH9KfyyHPUei8as7OVvv8JyC/yNp66EqJx5ps/j5/jyQXBxkAgXslERERGYhHoxjJ86zcUvdc2vz9ZcTdforn2SWvVCsglYhhJys4SkRAgGfpx54UzEnyaeysdY+kAgWTums7yuAgFbNYIiIi0hELJiNJzZCX2Xvk09gZpR9hm08sFmF2WDDaNK8LkQh4s6dXsbPiAjxd0T/EHYdj7gIAtJU82rY2ICIiIu04JGckmVp6j+xkUkilInzwTluNSdny3PweoABPV1y68xQ3E1IxYWALfPPDNfTq0BQ+TV3QL8Qd9rZSKFUCLt15ihW7YvOPPfF2RR1nhzLfl3skERERlR8/TY3ETlb2H6VKEDBn/X/UXxdeGde8iQv6dnJXF0J5ChXOXnuCXu2b4NtfbiLA0xUDu3jg1oNU+DerjRbutSAWi+Dm4gCRIHCPJCIiIhOrFENyKpUK69atQ0hICAICAvDOO+8gISHB3GGp5SoFyGzExYbPChT0HhV28XYyjp66h08nd8TwV5uriyXgn2E0O5kUi8a2hXdjZ3z2zTlcu/cMOblK/PCfe6jrbA+xSqXeIynIW/O9uUcSERGR8VSKHqaIiAh89913WLZsGerWrYsVK1Zg/PjxOHr0KGQy855hJohEuHb/Gdwb1cDr3fO3AogrsjN3Qe9RUXG3ktHv732aCoolALD/exhNKsmf9dTCvRY6+NWDVCKGSCRgQv8WGoWQROAKOCIiIlOy+IIpNzcX27dvx+zZs9GlSxcAwJo1axASEoJff/0Vffr0MWt82QoVPF9yRlaOAku2ncHyKZ3QL0SO3DwVZDZiOFWzxfuR/9EoiAoTBODmn//swh3g6YqUdDmCvF3hVC2/GNQsgEQlDrGVdqwJERERlZ/FD8nduHEDL168QLt27dTXnJyc4Ovri3PnzpkxMkAlFkOpFLAl+jJycpWQ5yohAFiy7SyWf3MOS7adRcaLnFKLJQBwcbJTr3gL8HTF+IEt8Pv5PzF5sD9kInALACIiIgtg8T1MiYmJAIB69eppXK9Tpw7++usvg9uVSstfK6ZlKyAS5Q+tjejtCwBQKgWN8+NuJKQWO0+uQJC3K+xtJVg8rj0c7KWQSSVQCSqM7fsy8kfjtG1EULEkErHGv60Zc7VOzNU6MVfrZGm5WnzBlJ2dDQDF5irZ2toiPT3doDbFYhGcnauVO7bHqSmFvsovlDKzcjXOjzsccxezw4LVXxcI8nbFpMH+cHSQoUGd6uWOpSI5OdmbO4QKw1ytE3O1TszVOllKrhZfMNnZ2QHIn8tU8N8AkJOTA3t7w/4QVSoBGRlZ5Y7NwU4KlSp/qCz2+hMM6+GFR8mZ+ONqIrwbO2NAZ3fk5qkgEYvQL8Qdb3T3hACghqMtHGwlsBEBipw8pOaUvYeTpZBIxHByskdGRjaUSpW5wzEp5mqdmKt1Yq7WqWiuTk72Zu1tsviCqWAoLikpCS+99JL6elJSEnx8fAxuV6Eo/zeag60USWlZCPR0RdS/78CrkTOkEhFG9/XF1kNXsO/YLfWzBWfK2UrFEKlUgFKFyroHt1KpMsqfX2XAXK0Tc7VOzNU6WUquFl8w+fj4wNHREWfPnlUXTBkZGbh27RrCwsLMGptYpUKdGvaYMMgPW76/jOXfnMOgbs3QsI4j3un3MgQA2TkK2NpIkJCYAZlElF8sERERUaVi8QWTTCZDWFgYVq5cCRcXFzRo0AArVqyAm5sbevbsae7wIBYE2NmIMXmoP+S5SmRlK2Ark8LeVopchQIi5O+n1KKJC1e6ERERVVIWXzABwPTp06FQKPD+++9DLpejdevW2LZtm9k3rSwgFQGutR2RmvoCjjZ/j6+qVLATi2HHfZGIiIgqvUpRMEkkEsyePRuzZ882dyhERERUBVnG5gZEREREFowFExEREZEWLJiIiIiItGDBRERERKQFCyYiIiIiLVgwEREREWnBgomIiIhICxZMRERERFqwYCIiIiLSQiQIVe/MDkEQoFIZN22JRAyl0voP1q0qeQLM1VoxV+vEXK1T4VzFYhFEIpHZYqmSBRMRERGRPjgkR0RERKQFCyYiIiIiLVgwEREREWnBgomIiIhICxZMRERERFqwYCIiIiLSggUTERERkRYsmIiIiIi0YMFEREREpAULJiIiIiItWDARERERacGCiYiIiEgLFkzloFKpsG7dOoSEhCAgIADvvPMOEhISzB1WMWlpaVi0aBE6d+6Mli1b4q233kJsbKz6/vXr1xEWFobAwEB07doV27Zt03i9Lnkaow1jun//PoKCghAVFWXVeUZHR6N3797w8/NDnz598NNPP1ldvnl5eVizZg26du2KoKAgvP322/jf//5ndXlGRERgxIgRRo+rItowRq7Hjx/HkCFDEBQUhNDQUHz22WeQy+VWmWth77//PkJDQ40ep6XkmpSUhPfeew/BwcFo27YtZs6ciWfPnlXOXAUy2Pr164X27dsLv//+u3D9+nXhnXfeEXr27Cnk5OSYOzQNY8aMEfr37y+cO3dOuHv3rvDxxx8L/v7+wp07d4Rnz54Jbdu2FRYuXCjcuXNHOHDggODn5yccOHBA/XpteRqjDWPKzc0VBg8eLHh5eQkHDx40WoyWlmd0dLTQvHlz4euvvxbi4+OFDRs2CD4+PsL//vc/q8p37dq1QseOHYWTJ08K8fHxwsKFC4WWLVsKiYmJVpPnV199JXh7ewthYWHqa5aSmy5tlDfXc+fOCc2bNxc2b94sxMfHCydOnBC6dOkizJs3z+pyLezXX38VvLy8hG7dumlct5Zcc3JyhD59+ghDhw4VLl26JMTFxQmvvvqqMG7cuEqZKwsmA+Xk5AhBQUHCnj171NfS09MFf39/4ejRo2aMTFN8fLzg5eUlnD9/Xn1NpVIJPXv2FL744gshMjJSCAkJEfLy8tT3V61aJfTq1UsQBN3yNEYbxrRq1SphxIgRGgWTteWpUqmEbt26CcuXL9e4/s477wiRkZFWlW///v2FZcuWqb9+/vy54OXlJfz888+VPs/ExERh7NixQmBgoPDqq69qfNhYSm7a2jBGrjNnzhTGjBmj8Xx0dLTg6+sr5OTkWFWuBZ48eSK0a9dOCAsL0yiYrCnXgwcPCoGBgUJycrL6WkxMjNC9e3fh+fPnlS5XDskZ6MaNG3jx4gXatWunvubk5ARfX1+cO3fOjJFpcnZ2xpYtW9CiRQv1NZFIBEEQkJ6ejtjYWLRu3RpSqVR9v127drh//z5SUlJ0ytMYbRjLuXPnsHfvXnz22Wca160tz3v37uHRo0fo16+fxvVt27YhPDzcqvKtWbMm/v3vf+Phw4dQKpXYu3cvZDIZmjdvXunzvHr1KmrUqIHDhw8jICBA456l5KatDWPk+s4772DOnDnFXqNQKJCZmWlVuQKAIAiYN28eBgwYgDZt2mjcs6ZcT548iXbt2qF27drqayEhITh27BgcHR0rXa4smAyUmJgIAKhXr57G9Tp16uCvv/4yR0glcnJyQpcuXSCTydTXfvrpJ/z555/o1KkTEhMT4ebmpvGaOnXqAAAeP36sU57GaMMYMjIyMGfOHLz//vvF3sua8gSA+Ph4AEBWVhbGjh2L9u3b4/XXX8fx48eNFqul5Ltw4UJIpVJ0794dfn5+WLNmDb744gu89NJLlT7P0NBQrFq1Co0aNSp2z1Jy09aGrsrK1dfXFz4+Puqvc3Nz8dVXX+Hll1+Gi4uLVeUKAF9//TWSk5Px3nvvFbtnTbnGx8ejYcOG2LhxI3r27Ilu3brhgw8+QEZGRqXMlQWTgbKzswFAoxABAFtbW+Tk5JgjJJ2cP38eCxYsQPfu3REaGgq5XF5iDgCQk5OjU57GaMMYFi9ejMDAwGK9LsaK0VLyBIDMzEwAwNy5c9G3b19s374dHTt2xOTJk3H69Gmryvfu3btwcnLCxo0bsXfvXgwePBhz587FjRs3rCrPoiwlN21tGJtCocCcOXNw584dfPjhhwB0+3lbWXK9ceMGNmzYgBUrVhR7L8C6cs3MzER0dDRu3ryJVatWYcmSJTh//jwmT54MQRAqXa5S7Y9QSezs7ADk/yZU8N9A/h++vb29ucIq07FjxzBr1iwEBARg9erVAPLzyM3N1Xiu4BvIwcFBpzyN0UZ5RUdHIzY2FkeOHCnxvrXkWcDGxgYAMHbsWAwaNAgA0Lx5c1y7dg1fffWV1eT76NEjzJ49G19//TWCg4MBAH5+frhz5w7Wr19vNXmWxFJy09aGMWVmZmLGjBk4e/Ys1q1bpx7isZZcc3JyMGvWLEyaNEmjR60wa8kVyP855eDggFWrVql/ZtWoUQOvv/46Ll++XOlyZQ+TgQq6/5KSkjSuJyUlFev6swS7du3CtGnT0LlzZ3z55Zfqbyw3N7cScwCAunXr6pSnMdoor4MHDyIlJUW99DwoKAgA8OGHH6JPnz5Wk2eBgva8vLw0rjdr1gwPHz60mnwvXbqEvLw8+Pn5aVwPCAhAfHy81eRZEkvJTVsbxpKUlIThw4cjLi4OX375pcZSe2vJ9eLFi7h9+zY2bNig/jm1efNmPH78GEFBQTh8+LDV5FrwHk2bNlUXSwDg6ekJAHj48GGly5UFk4F8fHzg6OiIs2fPqq9lZGTg2rVr6t+ELcWePXvw8ccfY/jw4fjiiy80uiZbt26N8+fPQ6lUqq+dPn0aTZs2Ra1atXTK0xhtlNfKlSvx448/Ijo6Wv0PAEyfPh1btmyxmjwL+Pr6olq1arh48aLG9Vu3buGll16ymnwLfhjevHmzWJ6NGze2mjxLYim5aWvDGNLT0zFq1Cg8e/YMe/bs0ZjAC+j287Yy5Orv74//+7//w6FDh9Q/p958803UqVMH0dHRCA0NtZpcASA4OFg9dF7g1q1bAIDGjRtXvlz1WlNHGlavXi20adNGOHbsmHrvh1deecWi9mG6d++e8PLLLwtTpkwRkpKSNP7JyMgQnj59KrRu3VqYO3eucPv2beHgwYOCn5+fEBUVpW5DW57GaMMUCm8rYI15bty4UQgKChKOHDkiJCQkCBEREYKPj49w5swZq8lXqVQKb7/9tvDqq68Kp0+fFu7fvy+sWbNGaN68uRAXF2c1eQqCIMydO1djSbal5KZLG+XNde7cucLLL78snD59utjPKYVCYVW5FrVu3bpi+zBZS64pKSlChw4dhMmTJws3b94UYmNjhb59+wojRoyolLmyYCoHhUIhfP7550K7du2EwMBAYfz48cKDBw/MHZaGTZs2CV5eXiX+M3fuXEEQBOHixYvCG2+8IbRo0ULo1q2bsHPnTo02dMnTGG0YW+GCyVgxWlqe27dvF0JDQ4WXX35Z6N+/v/Drr79aXb5paWnC4sWLha5duwpBQUHCsGHDhLNnz1pdniV9sFpKbtraKE+uSqVS8PPzK/XnVEEs1pBrSUoqmKwp1/v37wsTJkwQAgIChNatWwvz588XMjIyKmWuIkEQBP062YiIiIiqFs5hIiIiItKCBRMRERGRFiyYiIiIiLRgwURERESkBQsmIiIiIi1YMBERERFpwYKJiIiISAsWTERUYY4dO4aHDx+aOwwiIr1JzR0AEVm/u3fvYufOnTh27BgaNmyIV199FW+//bbGuYZERJaMO30TVUJ3797Fnj17cOrUKSQmJkIqlaJZs2bo378/3njjDY3TwUNDQ/Ho0SP112KxGNWqVYOnpyfefPNNDBgwQKPtos8DgEwmg5ubG1599VVMnToVtra2Osd6+fJlDB8+HE2aNAGQf6Duf//7X3Ts2BGbNm2CSCRSP3vt2jUMHz4cZ8+etcpiatKkSQgICMDEiRPNHQoR6Yk9TESVzI8//oj58+fD3d0dY8aMQdOmTSGXy3HixAksW7YMMTExiIyM1ChEunTpgsmTJwMAFAoFUlNT8eOPP2LOnDm4ceMG5s6dq/EehZ8HgJycHJw9exYRERF49OgRVq9erXO8GzduRO3atbFv3z4sXrwYgwYNQs+ePbFw4ULExsaidevW6mdPnDiBdu3aWWWxlJubizNnzmDatGnmDoWIDMCCiagSuXv3LubPn48OHTpg/fr1kEr/+V+4S5cuaNu2LaZPn44ffvgBffv2Vd9zcXFBYGCgRls9e/ZErVq1sH37dvTo0QOtWrUq8/m2bdsiMTERUVFRmDdvHurUqaNTzPfv34e/vz/s7OzU11599VXY2NigUaNGGs+eOHGiWI+XtTh37hyqVauG5s2bmzsUIjIAJ30TVSJbt26FWCzGJ598olEsFejVqxcGDhwIsVi3/7WnT58OmUyG7777TqfnW7RoAUEQ8NdffwEA1q9fD29v7zIncru5ueHKlSvIyclRX3N0dMSAAQPg5uamvpaeno5Lly6hc+fOAIARI0Zg3rx52Lx5Mzp27IiWLVti0qRJePDggUb7t27dQnh4OFq2bImWLVtiypQpGs+cPXsW3t7e+O6779CtWzd06NABp06dwrNnzzBr1ix07NgRfn5+GDBgAKKjozXajo+Px/Tp09GxY0cEBgZixIgROH/+vPr+w4cP4e3tjZ9++gnTp09HUFAQWrdujYULF+LFixcabcXExCAkJARKpRKdOnXCzJkzi/1Zvfbaa5g/f7766/3796NPnz5o0aIFunbtivXr10OhUGi8Zv/+/Rg8eDACAwPh7++PAQMG4Mcff1Tfj4qKgq+vL/bv349OnTqhc+fOuH37dql/X0RUMhZMRJXIb7/9hnbt2qFWrVqlPvPZZ5+hd+/eOrXn5OQEf39/jSKgLPfv3wcAdc/Q66+/jr1795bZ2/TOO+/g0aNHeOONN3Dz5k2kpKSU+NypU6fQtGlTNGjQQH3tt99+w8GDB7Fw4UIsWbIEN27cwMiRI5GVlaWO580330RKSgqWL1+OpUuX4sGDB3jrrbeKvc+aNWswd+5czJ07F4GBgZg9ezbu3LmDjz76CFu2bIGvry/mzp2Ls2fPAgDu3LmDwYMH48GDB3j//fexcuVKiEQijBo1Cn/88YdG2x9++CEaNGiAiIgIjBs3DgcPHkRkZKTGMydOnEDnzp0hlUoxcOBAHDt2DJmZmer7Fy9exL179zB48GAAwObNm/HBBx+gffv2iIyMxPDhw/Hll19i0aJF6tfs3r0bixYtQvfu3bF582asWLECNjY2mD17Nh4/fqx+TqlUIjIyEp988glmzJiBZs2alfr3RUSlEIioUkhLSxO8vLyE5cuXF7uXl5en8Y9CoVDf69atmzB37txS250+fbrg7++v8fycOXM02ktMTBT27dsntGjRQnj33Xf1jv3s2bNCWFiY4OPjI3h5eQmvvPKK8Ouvv2o8M3v2bI3cwsLCBF9fXyEhIUF97erVq4KXl5ewa9cuQRAE4b333hPat28vPH/+XP1Mamqq0KpVK3VbZ86cEby8vITVq1drvF+LFi2EiIgI9ddKpVJYvny5cO7cOUEQBOHdd98V2rRpI2RkZKifycvLE3r16iUMHTpUEARBePDggeDl5SXMmjVLo+0RI0YIffv2VX/9559/Cr6+vkJ6erogCIJw7949wcvLSzhw4ID6mQ8//FDo0aOHoFKphIyMDCEgIEBYtGiRRrv79u0TvLy8hFu3bgmCIAjLli0TPv/8c41nrly5Inh5eQlHjhwRBEEQDh48KHh5eQn79u0TiMhwnMNEVEmoVKoSryckJOCVV17RuNagQQMcP37c4PeKjo4uNjwllUrRs2dPLF68WO/22rRpg507d2LevHlwdnbGqVOnMH36dBw4cAC+vr4QBAGnTp3CqlWrNF4XFBSEl156Sf21r68vGjVqhNjYWAwfPhxnzpxB27ZtYWdnpx6qcnR0RHBwMP773/9qtOXt7a3xddu2bbF+/XrcuHEDXbp0QefOnTUmv//xxx/o1q0bqlevrvFn0KdPH2zcuFFjyK3ofC83NzeNlYYxMTEIDAyEk5MTAKBp06Zo1aoVDh06hCFDhiA3Nxc//vgjRo0aBZFIhLi4OGRnZyM0NFRjCC40NBQA8J///Aeenp6YN28eAOD58+eIj49HfHw8Tp8+DQDIy8vTiMnLy6vY3wsR6Y4FE1El4ezsDAcHh2JL/uvVq4cDBw6ov964cSNu3bqlc7tPnjzRmEsEAN26dcOUKVMAACKRCPb29mjQoIHGxG1Dde3aFVOmTEH37t3x3XffYcmSJbh8+TKys7M1Jp4DKHGor1atWsjIyAAApKWl4ccff9SYs1PAxcWl2OsKW7NmDSIjI/HTTz/h559/hlgsRocOHbB48WI0atQI6enpqF27drF2a9euDUEQNIbT7O3tNZ4Ri8UQCu3YUjAcV9jQoUOxYMECPH78GBcvXkRGRgYGDRqkzgsAJkyYUOz9ASApKQkA8Oeff2LRokU4c+YMpFIp3N3d1YWhUGTHmLKGcYlIOxZMRJVI9+7dcfz4cWRmZsLR0RFA/h5Jfn5+6mdq1qypc3vp6em4evVqsZVpNWvW1GjTUFlZWZgxYwZ69OiBN954Q33d0dERjRo1Un/wx8TEoH379sW2EygoHAp7+vSputepevXq6NChA8aMGVPsuZImxRdWvXp1zJ49G7Nnz8a9e/fw22+/ISIiAh999BG2bt2KGjVq4OnTp8Vel5ycDCC/gC2Ivyw5OTn4448/8K9//Uvj+quvvopPPvkEv/zyC+Li4tC+fXvUr18fANQ9UStXrlTvX1VY7dq1oVKpMGHCBNjY2GDfvn3w9fWFVCrFnTt3cPjwYa1xEZF+OOmbqBIJDw+HUqnEggULkJubW+y+XC4vtoqsLJGRkcjLy8OwYcOMGaaag4MDrl27hqioKI3rqampuHv3Ltzd3QHkF0xdunQp9vq4uDg8e/ZM/fXVq1fx8OFDtG/fHkD+UN+dO3fQvHlz+Pn5wc/PDy1atMDXX3+NX3/9tdS4Hj16hC5duuDnn38GALi7u2P8+PHo0KEDEhMTAQCtW7fGv//9bzx//lz9OqVSiR9++AF+fn467xV19uxZODo6FttOwMHBAb1798bRo0dx8uRJde8SAAQEBMDGxgZPnjxR5+Xn5wcbGxusWrUKDx8+RGpqKu7fv4+hQ4fC399fXSDGxMQAKH0Il4gMwx4mokrE09MTq1atwty5czFw4EC88cYb8Pb2hkKhQFxcHA4cOICnT59i3LhxGq979uwZLly4ACD/Qz8lJQW//PILjh49iokTJxrcm5SYmIjExET4+vqWWkCMGzcOy5Ytw9y5c5GUlIRz585hxYoVEIvFGDVqFJ49e4bLly/jiy++KPba7OxsjB8/HpMmTcKLFy+wZs0aeHl5qfeYmjx5Mt58802Eh4fjrbfegq2tLfbu3Ytjx45h3bp1pcbdoEEDuLm54ZNPPkFmZiZeeuklXLlyBSdOnEB4eDgAYOrUqYiJicHIkSMxYcIEyGQy7Nq1Cw8ePMDWrVt1/jOKiYkpNhxXYOjQoRg2bBgcHR015qE5Oztj3LhxWLt2LTIzM9G2bVs8efIEa9euhUgkgo+PD6pXr44GDRpg9+7dcHNzg5OTE06dOoUdO3ao/+yIyHhYMBFVMj169MDhw4fx7bff4sCBA3j06BEEQUCjRo3Qu3dvvPnmm8WGcU6cOIETJ04AyB+qql27Nry8vBAZGYlu3boZHMv+/fuxYcMG/Pbbb2jYsGGJz4wePRoikQi7d+9GQkICzp07Bz8/P3z11VeoW7cuDh8+DA8PD/VwVGHBwcFo164dFi5cCCB/0vOcOXPUxZmPjw92796NNWvWYM6cORAEAV5eXti4cSO6d+9eZuwbNmzA6tWrsXbtWqSmpqJevXqYOnWqet6Qp6cn9uzZg9WrV2PBggUQiUTw9/fHN998g+DgYJ3/jGJiYvDee++VeC8wMBDOzs545ZVXis0PmzFjBlxdXbFnzx71EGH79u3x3nvvqSeiR0REYOnSpZg3bx5kMhmaNWuGTZs24dNPP0VsbCxGjBihc5xEVDaeJUdEFWbu3LkYPHgw2rZtq/XZgg/7nTt3mjoss7l06RJef/11HDx4EC1atDB3OERUBvYwEVGF6dmzp8bGlFXV2bNncfbsWURHR6Ndu3YslogqARZMRFRhevToYe4QLEJqaiq++uorNGvWDMuWLTN3OESkAw7JEREREWnBbQWIiIiItGDBRERERKQFCyYiIiIiLVgwEREREWnBgomIiIhICxZMRERERFqwYCIiIiLSggUTERERkRYsmIiIiIi0+H945fggYl7H5AAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.scatterplot(data=CO2vGDP, x='GDP', y='CO2')\n",
"sns.scatterplot(data=CO2vGDP[CO2vGDP['Country']=='United Kingdom'], x='GDP', y='CO2',color='r') # see what I did there to plot the UK in red?\n",
"plt.xlabel('GDP: $/person/year')\n",
"plt.ylabel('CO2 emissions: tonnes/person/year')"
]
},
{
"cell_type": "markdown",
"id": "ac0bb52f",
"metadata": {},
"source": [
"### Calculate the correlation\n",
"\n",
"We can calculate the correlation using the built in function pandas.df.corr()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "7da276fe",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
CO2
\n",
"
GDP
\n",
"
population
\n",
"
\n",
" \n",
" \n",
"
\n",
"
CO2
\n",
"
1.000000
\n",
"
0.795121
\n",
"
-0.000190
\n",
"
\n",
"
\n",
"
GDP
\n",
"
0.795121
\n",
"
1.000000
\n",
"
-0.027832
\n",
"
\n",
"
\n",
"
population
\n",
"
-0.000190
\n",
"
-0.027832
\n",
"
1.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 GDP population\n",
"CO2 1.000000 0.795121 -0.000190\n",
"GDP 0.795121 1.000000 -0.027832\n",
"population -0.000190 -0.027832 1.000000"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"CO2vGDP.corr()"
]
},
{
"cell_type": "markdown",
"id": "b528b58b",
"metadata": {},
"source": [
"Humph, population was included in my correlation matrix, which I didn't really want. \n",
"\n",
"The function pandas.df.corr() returns the matrix of correlations between all pairs of variables in your dataframe. \n",
"\n",
"This isn't a big problem in the current case, but if you had a big dataframe with many irrelevant columns, it would be an issue, because we don't want the reader to have to search through a huge correlation matrix to find the correlation we are interested in.\n",
"\n",
"We have two options to avoid this - one is to create a new dataframe with only the columns you want to correlate, like this:"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "b4e3fbea",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
CO2
\n",
"
GDP
\n",
"
\n",
" \n",
" \n",
"
\n",
"
CO2
\n",
"
1.000000
\n",
"
0.795121
\n",
"
\n",
"
\n",
"
GDP
\n",
"
0.795121
\n",
"
1.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 GDP\n",
"CO2 1.000000 0.795121\n",
"GDP 0.795121 1.000000"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"CO2vGDP_reduced = CO2vGDP[['CO2','GDP']] # new dataframe has only columns 'CO2' and 'GDP'\n",
"CO2vGDP_reduced.corr()"
]
},
{
"cell_type": "markdown",
"id": "c14907a2",
"metadata": {},
"source": [
"The other is to correlate just the two columns we want, rather than getting the whole correlation matrix:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "4e998580",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.7951213612309438"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"CO2vGDP['CO2'].corr(CO2vGDP['GDP'])"
]
},
{
"cell_type": "markdown",
"id": "3203dcc3",
"metadata": {},
"source": [
"### Outliers\n",
"\n",
"The correlation between GDP and C02 looks quite high, 0.79.\n",
"\n",
"However, looking at our scatterplot, I can see a problem - there is one bad outlier with very high GDP and high CO2 emissions.\n",
"\n",
"Any guesses what this country is? \n",
"\n",
"We can find out by sorting the dataframe by GDP:"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "17f150d6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Country
\n",
"
CO2
\n",
"
GDP
\n",
"
population
\n",
"
\n",
" \n",
" \n",
"
\n",
"
122
\n",
"
Qatar
\n",
"
38.4397
\n",
"
153764.0
\n",
"
2766743
\n",
"
\n",
"
\n",
"
112
\n",
"
Norway
\n",
"
8.3307
\n",
"
84580.0
\n",
"
5312321
\n",
"
\n",
"
\n",
"
154
\n",
"
United Arab Emirates
\n",
"
16.0112
\n",
"
76398.0
\n",
"
9140172
\n",
"
\n",
"
\n",
"
133
\n",
"
Singapore
\n",
"
7.9898
\n",
"
68402.0
\n",
"
5814543
\n",
"
\n",
"
\n",
"
79
\n",
"
Kuwait
\n",
"
23.1008
\n",
"
65521.0
\n",
"
4317190
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
108
\n",
"
Niger
\n",
"
0.0830
\n",
"
965.0
\n",
"
22577060
\n",
"
\n",
"
\n",
"
39
\n",
"
Democratic Republic of Congo
\n",
"
0.0331
\n",
"
859.0
\n",
"
87087352
\n",
"
\n",
"
\n",
"
85
\n",
"
Liberia
\n",
"
0.2252
\n",
"
818.0
\n",
"
4889396
\n",
"
\n",
"
\n",
"
21
\n",
"
Burundi
\n",
"
0.0608
\n",
"
651.0
\n",
"
11493476
\n",
"
\n",
"
\n",
"
26
\n",
"
Central African Republic
\n",
"
0.0471
\n",
"
623.0
\n",
"
5094795
\n",
"
\n",
" \n",
"
\n",
"
165 rows × 4 columns
\n",
"
"
],
"text/plain": [
" Country CO2 GDP population\n",
"122 Qatar 38.4397 153764.0 2766743\n",
"112 Norway 8.3307 84580.0 5312321\n",
"154 United Arab Emirates 16.0112 76398.0 9140172\n",
"133 Singapore 7.9898 68402.0 5814543\n",
"79 Kuwait 23.1008 65521.0 4317190\n",
".. ... ... ... ...\n",
"108 Niger 0.0830 965.0 22577060\n",
"39 Democratic Republic of Congo 0.0331 859.0 87087352\n",
"85 Liberia 0.2252 818.0 4889396\n",
"21 Burundi 0.0608 651.0 11493476\n",
"26 Central African Republic 0.0471 623.0 5094795\n",
"\n",
"[165 rows x 4 columns]"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"CO2vGDP.sort_values(by='GDP', ascending=False) # sort in descending order to put the richest country at the top"
]
},
{
"cell_type": "markdown",
"id": "8cdcd6bf",
"metadata": {},
"source": [
"It's Qatar - maybe not what you expected?"
]
},
{
"cell_type": "markdown",
"id": "8038acab",
"metadata": {},
"source": [
"### Remove outlier\n",
"\n",
"Let's exclude Qatar from our dataset and re-calculate the correlation.\n",
"\n",
"We erase the values for Qatar data values for CO2 and GDP for Qatar to Nan but in this case, since they are not misrecorded but just unusual values, let's not do that, as we don't want to hide the data point.\n",
"\n",
"Instead we conduct the correlation on the dataframe excluding Qatar:"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "951a05b8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
CO2
\n",
"
GDP
\n",
"
population
\n",
"
\n",
" \n",
" \n",
"
\n",
"
CO2
\n",
"
1.000000
\n",
"
0.732323
\n",
"
0.005751
\n",
"
\n",
"
\n",
"
GDP
\n",
"
0.732323
\n",
"
1.000000
\n",
"
-0.025626
\n",
"
\n",
"
\n",
"
population
\n",
"
0.005751
\n",
"
-0.025626
\n",
"
1.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 GDP population\n",
"CO2 1.000000 0.732323 0.005751\n",
"GDP 0.732323 1.000000 -0.025626\n",
"population 0.005751 -0.025626 1.000000"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"CO2vGDP[CO2vGDP['Country']!='Qatar'].corr()"
]
},
{
"cell_type": "markdown",
"id": "20ff0ed2",
"metadata": {},
"source": [
"Hm, the correlation went down from $r$=0.79 to $r$=0.073 - lower but still strong\n",
"\n",
"Here's a plot of the data with Qatar excluded"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "9dc42324",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'CO2 emissions: tonnes/person/year')"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG2CAYAAABs7sxwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoi0lEQVR4nO3deVxU9foH8M+ZGYYdBUVRc1dAExDDfc0ly31Ly63MBff8lUtqmWmmlUtuiKaWuVRu17Srmda9ol0lMdTKLTdySUUEUXZmzu8PYmJkgDnDGZhz+Lxfr17FOTNnHniaOc98V0EURRFEREREKqAp7QCIiIiI5MLChoiIiFSDhQ0RERGpBgsbIiIiUg0WNkRERKQaLGyIiIhINVjYEBERkWqwsCEiIiLV0JV2AKVBFEUYjfKsS6jRCLJdi+yLuVIW5ks5mCtlUWq+NBoBgiAU+bgyWdgYjSIePEgp9nV0Og28vd2RnJyK7GyjDJGRvTBXysJ8KQdzpSxKzpePjzu02qILm1LvikpISMC0adPQokULhIaGYsyYMbh8+bLp/Pnz5zF06FA0btwYHTp0wIYNG0oxWiIiInJkpV7YjBs3Djdu3MCnn36KnTt3wsXFBa+++irS0tKQmJiIESNGoFatWti1axcmTZqE5cuXY9euXaUdNhERETmgUu2KSkxMxFNPPYVx48ahfv36AIDx48ejd+/e+OOPP3D8+HHo9XrMnTsXOp0OdevWRVxcHD799FP079+/NEMnIiIiB1SqLTbe3t5YunSpqai5f/8+NmzYAD8/P9SrVw8xMTFo2rQpdLp/6q8WLVrg2rVrSEhIKK2wiYiIyEE5zODhd955B9u3b4der8eaNWvg5uaGO3fuwN/f3+xxlSpVAgDcvn0bFSpUsPn1dLri13Rarcbs3+S4mCtlYb6Ug7lSlrKQL4cpbF555RUMGjQIX375JSZMmIBt27YhPT0der3e7HHOzs4AgIyMDJtfS6MR4O3tXqx48/LycpXtWmRfzJWyMF/KwVwpi5rz5TCFTb169QAA8+fPx+nTp7Flyxa4uLggMzPT7HG5BY2bm5vNr2U0ikhOTrU92L9ptRp4ebkiOTkNBoOyps2VNcyVsjBfysFcKYuS8+Xl5WpVS1OpFjYJCQk4fvw4XnjhBWi1WgCARqNB3bp1ce/ePfj5+eHevXtmz8n9uXLlysV6bTnn7xsMRsWtB1BWMVfKwnwpB3OlLGrOV6l2st27dw9vvvkmfv75Z9OxrKwsnDt3DnXr1kXTpk1x6tQpGAwG0/njx4+jdu3axRpfQ0REROpUqoVNYGAg2rRpg/feew8xMTG4dOkSZsyYgeTkZLz66qvo378/Hj9+jNmzZ+Py5cvYvXs3Nm3ahPDw8NIMm4iIiBxUqRY2giDgk08+QYsWLTBlyhS8+OKLePjwIbZu3YqqVauiQoUKWL9+Pa5du4a+ffti1apVmD59Ovr27VuaYRMREZGDEkRRVN5OWMVkMBhl3SsqMTFFtX2VaqHEXImCgLQsA1LTs+HmooOrkxZCGXm7KjFfZRVzpSxKzlfOXlEOPniYiCwzCAIidp1F7KV407HQAF+M7xcMbRkpboiIbKHeFXqIFEq0UNQAQOzFeETsPgtRKHp3WyKisoqFDZGDScsy5CtqcsVejEdalsHiOSIiYmFD5HBS07OLdZ6IqCxjYUPkYNxcCh/6VtR5IqKyjIUNkYNxddIiNMDX4rnQAF+4OmlLOCIiIuVgYUPkYARRxPh+wfmKm9xZUWVlyjcRkS3Ypk3kgLSiiIn9gsvsOjZERLZiYUPkoARRhJtOAzcPfc4BFjVEREViVxQRERGpBgsbIiIiUg0WNkRERKQaLGyIiIhINVjYEBERkWqwsCEiIiLVYGFDREREqsHChoiIiFSDhQ0RERGpBgsbIiIiUg0WNkRERKQaLGyIiIhINVjYEBERkWqwsCEiIiLVYGFDREREqsHChoiIiFSDhQ0RERGpBgsbIiIiUg0WNkRERKQaLGyIiIhINVjYEBERkWqwsCEiIiLVYGFDREREqsHChoiIiFSDhQ0RERGpBgsbIiIiUg0WNkRERKQaLGyIiIhINVjYEBERkWqwsCEiIiLVYGFDREREqiG5sJk7dy5iY2PtEQsRERFRsUgubPbt24f09HR7xEJERERULJILm6CgIERFRdkjFiIiIqJi0Ul9QkBAADZv3oyDBw+iXr16qFChgtl5QRDwwQcfyBYgERERkbUkFzaHDh1CpUqVAACXL1/G5cuXzc4LgiBPZEREREQSSS5sfvzxR3vEQURERFRssk/3vnLliqTHJyUlYc6cOWjXrh2aNGmCl19+GTExMabzM2fOREBAgNk/7dq1kztsIiIiUgHJLTZJSUlYunQpTp48iaysLIiiCAAQRRGpqal4+PAhzp8/b/X13njjDSQkJGDp0qXw8fHBtm3bMHLkSOzevRt169bFxYsXMXbsWAwdOtT0HK1WKzVsIiIiKgMkt9gsXLgQu3btQq1ataDVauHp6YmgoCBkZWUhOTkZ8+bNs/pacXFx+Omnn/Duu+8iLCwMderUwezZs1G5cmV8++23MBgMuHz5MoKCguDr62v6x8fHR2rYREREVAZILmyOHj2KiRMnYs2aNXjppZfg5+eHTz75BN999x0CAgLyDSYujLe3N9atW4dGjRqZjgmCAFEU8fDhQ1y/fh0ZGRmoW7eu1DCJiIioDJLcFZWcnIxnnnkGAFC/fn1s2LABAODu7o7XXnsNq1atwsyZM626lpeXF9q3b2927MCBA/jzzz/Rpk0bXLp0CYIgYNOmTYiKioJGo0H79u0xZcoUeHp6Sg3djE5X/OFFWq3G7N/kuJgrZWG+lIO5UpaykC/JhY23tzcePXoEAKhZsyYSEhKQmJgIb29vVK5cGXfv3rU5mFOnTmHWrFno1KkTOnbsiBUrVkCj0aBatWqIjIxEXFwcPvzwQ1y6dAmbNm2CRmNbYjQaAd7e7jbH+SQvL1fZrkX2xVwpC/OlHMyVsqg5X5ILm5YtWyIyMhIBAQF46qmnUL58eezevRsjR47Ef/7zH3h7e9sUyOHDhzF16lSEhIRg6dKlAIBJkybh1VdfhZeXFwDA398fvr6+GDRoEH799VeEhITY9FpGo4jk5FSbnpuXVquBl5crkpPTYDAYi309sh/mSlmYL+VgrpRFyfny8nK1qqVJcmHz+uuvY9iwYXjrrbewZcsWjBkzBh9++CHWrl2LR48eYcKECZKD3bJlCxYsWIAuXbpg8eLF0Ov1AHLG2+QWNbn8/f0BAHfu3LG5sAGA7Gz5EmowGGW9HtkPc6UszJdyMFfKouZ8SS5sqlWrhv379+P69esAgBEjRqBixYr45ZdfEBwcjL59+0q63rZt2zB//nwMGzYMs2bNMuteevPNN5GUlGQaxwMAv/76KwCgXr16UkMnIiIilZNc2ACAi4sLAgMDAQAZGRno0aMHevbsKfk6165dwwcffIAuXbogPDwcCQkJZq/Ro0cPjBs3DmvWrEH37t1x7do1zJs3Dz169OBMKSIiIsrHpsLm6tWrWLFiBf73v//h8ePH2LFjB3bs2IG6deti2LBhVl/n4MGDyMrKwqFDh3Do0CGzc3379sWiRYuwfPlyREZGIjIyEp6enujZsyemTJliS9hERESkcpILm/Pnz2PIkCGoUKECevbsiW3btgEAnJyc8MEHH8DDw8Pq7qixY8di7NixhT6ma9eu6Nq1q9QwiYiIqAySXNh8+OGHaNSoETZu3AgA2Lp1KwBg9uzZSE9PxxdffCF5nA0RERGRHCQvBHP69Gm8+uqr0Ol0EATB7Fy3bt1Mg4qJiIiISprkwsbZ2Rnp6ekWzyUlJZmmahMRERGVNMmFTevWrbFixQrcuXPHdEwQBKSkpGDjxo1o1aqVrAESERERWUvyGJtp06Zh0KBBeP755xEYGAhBELBo0SJcu3YNoiiaVg0mIiIiKmmSW2yqVKmCb775Bq+88gpEUUSNGjWQmpqKHj16YPfu3ahevbo94iQiIiIqkuQWm9u3b6Nq1ar4v//7P3vEQ0RERGQzyS02nTp1wogRI7Bv3z5kZGTYIyYiIiIim0gubBYvXgydToe33noLrVu3xpw5c3D69Gk7hEZEREQkjeSuqO7du6N79+6Ij4/Hnj178M0332D79u2oVasW+vXrh969e6Ny5cr2iJWIiIioUJJbbHL5+vpi9OjR+Pbbb/Gvf/0LlSpVwrJly9CxY0eMGzcOp06dkjNOIiIioiLZXNgAQExMDN555x28+uqriImJQevWrTFr1ixkZ2dj6NCh+Oyzz+SKk4iICAAgCgJSs424/zgTqdlGiE+sgk9lm+SuqLi4OHzzzTfYu3cvbt26hWrVqmH48OHo378//Pz8AABDhgzB1KlTsWbNGowYMUL2oImIqGwyCAIidp1F7KV407HQAF+M7xcMrSiWYmTkKCQXNl27doWzszM6d+6M+fPno2XLlhYfV6dOHe4bRUREshEtFDUAEHsxHhG7z2Jiv2AILG7KPKsKm+zsbOh0OQ9955130KtXL3h6ehb6nPHjx2P8+PHFj5CIiAhAWpYhX1GTK/ZiPNKyDHDTFWuEBamAVYVN06ZN0apVK7Rr1w4dO3YssqghIiKSW2p6dpHn3Ty4EXNZZ1Vpu3XrVgQFBWHPnj3o3LkzevbsiY8++gjR0dHIzi78fzQiIiI5uLkU/l28qPNUNlj1f0HDhg3RsGFDjB07FsnJyTh27BiOHDmCN954A+np6WjZsiXat2+Ptm3bmgYQExERycnVSYvQAF/EXszfHRUa4AtXJy3AMTZlniCKxfu/4OzZs4iKisLRo0fx66+/om7duti3b59c8dmFwWDEgwcpxb6OTqeBt7c7EhNTkJ1tlCEyshfmSlmYL+Uo6VwZBAERu8+aFTecFWU9Jb+3fHzcodUW3dFU7Ha74OBgBAcHY+LEiUhMTMSxY8eKe0kiIiKLtKKIif2CkZZlyBlT46KDq5OWs6HIxKbC5tGjRzhx4gRSU1NRzAYfIiIiSQRRhJtO889AYd6HKA/Jhc2RI0cwZcoUpKenWyxqBEFAnz595IiNiIiISBLJhc3SpUtRp04dzJw5E5UrV4ZGwzUDiIiIyDFILmyuXr2KiIgIhIWF2SMeIiIiIptJbm6pWrUqHj9+bI9YiIiIiIpFcmETHh6O1atX4+bNm/aIh4iIiMhmkrui9u3bh7t376JLly7w8fGBi4uL2XlBEHD48GHZAiQiIiKyluTCxs/Pj6sLExERkUOSXNgsXLjQHnEQERERFZvNKw8fPXoU0dHRSE5Ohre3N8LCwtC2bVs5YyMiIiKSRHJhk5mZifHjx+PYsWPQarXw9vZGYmIi1q1bhxYtWmDt2rXQ67ltPBEREZU8ybOiVq5ciVOnTuGjjz7C2bNncezYMZw5cwYLFy7E6dOnERERYY84iYiIiIokubD59ttvMXHiRPTq1QtarRYAoNPp0KdPH0ycOBHffvut7EESERERWUNyYfPgwQM0bNjQ4rmGDRvi7t27xQ6KiIiIyBaSC5saNWrg5MmTFs9FR0ejSpUqxQ6KiIiIyBaSBw+/9NJLWLhwIVxcXNCjRw9UrFgR9+/fx759+7B+/XpMmjTJHnESERERFUlyYfPyyy/j3LlzWLp0KZYtW2Y6Looi+vbtizFjxsgaIBEREZG1JBc2Go0GCxYswIgRI3Dy5Ek8fPgQ5cqVQ7NmzVC3bl17xEhEKicKAtKyDEhNz4abiw7uWsm95EREAIqxQF+9evVQr149AMDZs2dx5coV+Pr6wsvLS7bgiEj9DIKAiF1nEXsp3nQsNMAXkwaG2v4BRURlluSvRfHx8Rg+fDhWr14NAPjiiy8waNAgTJ48Gc899xz++OMP2YMkInUSLRQ1ABB7MR4rt8fCIJZSYESkWJILm48++ghXr15FcHAwjEYj1q1bh1atWmHPnj2oV68elixZYo84iUiF0rIM+YqaXLEX45GSYSjhiIhI6SQXNseOHcOMGTPQtm1bnD59Gvfv38fw4cMRGBiIUaNGISYmxh5xEpEKpaZnF3E+q4QiISK1kFzYpKamws/PDwBw5MgR6PV6tGjRAgCg1+shimw7JiLruLkUPorGzcWphCIhIrWQXNjUqlULMTExyMzMxHfffYdmzZrB2dkZALB3717UqlVL7hiJSKVcnbQIDfC1eC40wBfuztoSjoiIlE5yYRMeHo5Vq1ahZcuWuHHjBkaMGAEAePHFF7F3716MHDlS9iCJSJ0EUcT4fsH5ipvQAF9MHhgKrVBKgRGRYkmeTdmtWzf4+fkhJiYGzZo1Q+PGjQEAYWFhmDx5Mtq2bSt3jESkYlpRxMR+webr2DjrULG8KxITU0o7PCJSGMktNmPHjkV6ejrGjBljKmoAmAYUS5WUlIQ5c+agXbt2aNKkCV5++WWzAcjnz5/H0KFD0bhxY3To0AEbNmyQ/BpE5NgEUYSbToOKHnq46TRsqSEim0kubE6ePAmtVr5+7zfeeANnzpzB0qVLsXPnTjz99NMYOXIkrly5gsTERIwYMQK1atXCrl27MGnSJCxfvhy7du2S7fWJiIhIPSR3RbVu3Ro7duxASEgIXFxcivXicXFx+Omnn/Dll1+iSZMmAIDZs2cjKioK3377LVxcXKDX6zF37lzodDrUrVsXcXFx+PTTT9G/f/9ivTYRERGpj+TCxtnZGQcOHMChQ4fw1FNPoUKFCmbnBUHApk2brLqWt7c31q1bh0aNGpk9XxRFPHz4EL/99huaNm0Kne6fMFu0aIG1a9ciISEh32tLodMVfy8a7d/72Wi5r43DY66UhflSDuZKWcpCviQXNnfu3EFoaKjp5yfXrZGyjo2Xlxfat29vduzAgQP4888/0aZNGyxbtgz+/v5m5ytVqgQAuH37ts2FjUYjwNvb3abnWuLl5Srbtci+mCtlYb6Ug7lSFjXnS3Jhs3nzZnvEAQA4deoUZs2ahU6dOqFjx45YuHAh9Hq92WNy18zJyMiw+XWMRhHJyanFihXIqXi9vFyRnJwGg8FY7OuR/TBXysJ8KQdzpSxKzpeXl6tVLU02b5778OFDxMTE4N69e+jatSuSkpJQu3ZtCIJt0xkOHz6MqVOnIiQkBEuXLgUAuLi4IDMz0+xxuQWNm5ubraEDALKz5UuowWCU9XpkP8yVsjBfysFcKYua82VTYbNmzRqsXbsW6enpEAQBwcHBWLZsGZKSkrBx40Z4eXlJut6WLVuwYMECdOnSBYsXLza10vj5+eHevXtmj839uXLlyraETkRERComefTQli1bsHLlSowYMQLbt283jal55ZVXcOPGDSxfvlzS9bZt24b58+djyJAh+OSTT8y6npo2bYpTp07BYPhnh9/jx4+jdu3axRo4TEREROokubDZvHkzxowZg9dffx1PP/206Xjbtm0xZcoU/Pjjj1Zf69q1a/jggw/QpUsXhIeHIyEhAfHx8YiPj8ejR4/Qv39/PH78GLNnz8bly5exe/dubNq0CeHh4VLDJiIiojJAclfU7du30axZM4vn6tSpg/v371t9rYMHDyIrKwuHDh3CoUOHzM717dsXixYtwvr167FgwQL07dsXvr6+mD59Ovr27Ss1bCIiIioDJBc2VapUQWxsLFq1apXv3G+//YYqVapYfa2xY8di7NixhT4mODgYX3/9tdQwiYiIqAySXNgMGDAAK1euhIuLCzp06AAASE1NxcGDB7F27VrTbt9EREREJU1yYTN69GjcvHkTixcvxuLFiwEAw4cPBwD07NmT41+IiIio1EgubARBwLx58zBixAhER0cjKSkJnp6eaNasGerXr2+PGImIiIisYvMCfbVr1wYAJCcnw8fHB9WrV5ctKCIiIiJb2FTYbN26FWvWrEFCQoLpWNWqVfHmm2+iW7dusgVHREREJIXkwmbr1q2YP38+OnXqhOeeew4VKlTA/fv38d133+HNN9+EXq9H586d7RErERERUaEkFzabNm3C4MGDMWfOHLPjffr0wZw5c7B69WoWNkREFoiCgLQsA1LTs+HmooOrkxbC36u3E5E8JBc2d+/eRadOnSye69q1K7755ptiB0VEpDYGQUDErrOIvRRvOhYa4Ivx/YKhZXFDJBvJWyoEBQXh6NGjFs/FxsYiICCg2EEREamJaKGoAYDYi/GI2H0WoiCUUmRE6iO5xWbcuHF444038PjxY/Tq1QuVKlVCUlISfvzxR3z++eeYNWsWTp48aXp806ZNZQ2YiEhp0rIM+YqaXLEX45GWZYCbTvL3TCKyQHJhM3LkSADAzp07sWvXLtPx3F2+33vvPdPPgiDg/PnzcsRJRKRYqenZRZ5389CXUDRE6ia5sPniiy/sEQcRkWq5uRT+UVvUeSKynlXvpnXr1qFdu3YIDAwscGdvIiKyzNVJi9AAX8RezN8dFRrgC1cnLcABxESysKpT9/Tp0xg8eDDatm2L2bNn4+DBg3j8+LG9YyMiUgVBFDG+XzBCA3zNjufOiuKUbyL5CKJo3TsqKysLP//8M44ePYojR47gxo0bCA0NRdu2bU2tOUphMBjx4EFKsa+j02ng7e2OxMQUZGcbZYiM7IW5Uha15kuN69ioNVdqpeR8+fi4Q6stuj3G6sLmSTdu3EBUVBSioqLw888/w9PTE+3atUO7du3w3HPP2XLJEsPCpuxhrpSF+VIO5kpZlJwvuxc2eWVmZiI6OhpHjhzB0aNHcfDgweJe0q5Y2JQ9zJWyMF/KwVwpi5LzZW1hI8vCCRcuXEBaWhomT57s8EUNERERqZfkwiY+Ph7Dhw/H6tWrAeRM/x40aBAmT56Mrl274vLly7IHSURERGQNyYXNRx99hKtXryI4OBhGoxHr1q1Dq1atsGfPHtStWxcff/yxPeIkUhRREJCabcT9x5lIzTZyyXwiohIieVWoY8eOYdasWWjbti1++eUX3L9/HwsWLEBgYCBGjRqFqVOn2iNOIsXgZodERKVHcotNamoq/Pz8AABHjhyBXq9HixYtAAB6vR4yjEUmUixudkhEVLokFza1atVCTEwMMjMz8d1336FZs2ZwdnYGAOzduxe1atWSO0YixbBms0MiIrIfyYVNeHg4Vq1ahZYtW+LGjRsYMWIEAODFF1/E3r17TZtkEpVF1mx2SERE9iN5jE23bt1QuXJlnDp1Cs2aNUPjxo0BAGFhYZg8eTLatm0rd4xEisHNDomISpdNn7LPPPMMnnnmGQBARkYG9Ho9ZsyYIWtgRErEzQ6JiEqXTQv0Xb16FVOmTEGzZs0QGhqKc+fOYe7cudi8ebPc8REpCjc7JEs4/Z+o5EhusTl//jyGDBmCChUqoGfPnti2bRsAwMnJCR988AE8PDzQt29f2QMlUgqtKGJiv2DVbXZItuH0f6KSJbnF5sMPP0SjRo1w4MABzJw50zS9e/bs2RgwYAC++OIL2YMkUhpBFOGm06Cihx5uOg2LmjKK0/+JSp7kwub06dN49dVXodPpIDzxpuzWrRuuX78uV2xERIrG6f9EJU9yYePs7Iz09HSL55KSkqDX64sdFBGRGpTm9H+O66GySvIYm9atW2PFihVo0qQJfH1zBkgKgoCUlBRs3LgRrVq1kj1IIiIlKq3p/xzXQ2WZ5BabadOmITU1Fc8//zyGDBkCQRCwaNEiPP/88/jrr7/wxhtv2CNOIiLFyZ3+b4lp+r/MOK6HyjrJhU2VKlXwzTff4JVXXoEoiqhRowZSU1PRo0cP7N69G9WrV7dHnEREilMa0/85rofKOpvaQb29vfF///d/csdCRKQ6JT3935pxPW4eHAupBKIgcNkIG9hU2Dx69AgnTpxAamqqxd28+/TpU9y4iIhUI3f6v6mgsOPNidt6qAPHSdlO8v/hR44cwZQpU5CWlmbxvCAILGyIiEqJLdt6sGXAsRQ1TmoiVzEvlOTCZunSpahTpw5mzpyJypUrQ6OxaVcGIiKyg9xxPRG7z5oVNwWN62HLgOOxZpyUm4733oJILmyuXr2KiIgIhIWF2SMeIiIqJmvH9bBlwDFxnFTxSC5sqlatisePH9sjFiKiEqP27hdrxvWwZcAxcZxU8Uj+64SHh2P16tUICgrCU089ZY+YiIjsit0vOdgy4JhsGSdF/5Bc2Ozbtw93795Fly5d4OPjAxcXF7PzgiDg8OHDsgVIRCQndr/8gy0DjknqOCkyJ/n/Wj8/P/j5+dkjFiIiu2P3yz/YMuC4Snr9IzWRXNgsXLjQHnEQEZUIdr/8gy0Djq0k1z9SE5vbGR8+fIi0tDQYjcZ856pWrVqsoIiI7IXdL+bYMkBqI/kdfP36dbz11ls4c+ZMgY85f/68TcFERETg+PHj2Lx5s+nYzJkzsXv3brPHVa5cGVFRUTa9BhGVbex+yY8tA6Qmkgub+fPn4/r165g4cSL8/PxkW6Dv888/x4oVK9C0aVOz4xcvXsTYsWMxdOhQ0zGtVv4dcUleap9KS8rF7hcidZNc2MTExGDBggXo0aOHLAHcvXsXs2fPxqlTp1C7dm2zcwaDAZcvX8b48ePh6+tbwBXI0XAqLTk6dr8QqZfk5hYPDw+UK1dOtgB+//13lCtXDnv37kVISIjZuevXryMjIwN169aV7fXIvoqaSisKQilFRmQut/uloocebjoNixoilZDcYtO7d29s3boVbdq0gSDDTapjx47o2LGjxXOXLl2CIAjYtGkToqKioNFo0L59e0yZMgWenp7Fel2dDNM5tVqN2b8JSE4vaiqtEV4uJd+VyFwpC/OlHMyVspSFfEkubFxdXXHq1Cl06dIFQUFBFhfo++CDD2QJ7o8//oBGo0G1atUQGRmJuLg4fPjhh7h06RI2bdpk8/gejUaAt7e7LDECgJeXq2zXUrp7cQ8KPZ+emY2aVbxKKJr8mCtlYb6Ug7lSFjXnS3Jh869//Quenp4wGo0WZ0bJ0YqTa9KkSXj11Vfh5ZVzI/T394evry8GDRqEX3/9NV/XlbWMRhHJyanFjk+r1cDLyxXJyWkwGPJPey+LXPSF/y/lotchMTGlhKL5B3OlLMyXcjBXyqLkfHl5uVrV0iS5sPnxxx9tCsgWgiCYippc/v7+AIA7d+7YXNgAQHa2fAk1GIyyXk/JXJ00RUyl1ZTq34q5UhbmSzmYK2VRc75s7mRLTk5GVFQU/v3vf+P48eN22fH7zTffxMiRI82O/frrrwCAevXqyf56VHy5U2lDA8xnsXEqLRERlQSblthct24dIiIikJ6ebjrm5OSEsWPHYsKECbIF16NHD4wbNw5r1qxB9+7dce3aNcybNw89evTgTCkHxqm0RERUWiQXNrt27cLSpUsxYMAA9OrVCxUrVkR8fDy++eYbrFq1ClWrVkXfvn1lCe7ZZ5/F8uXLERkZicjISHh6eqJnz56YMmWKLNcn++FKpkREVBoEUZR2x+nZsyfCwsLw7rvv5js3b948xMbG4l//+pdsAdqDwWDEgwfFH8Cq02ng7e2OxMQU1fZVqgVzpSzMl3IwV8qi5Hz5+LhbNXhY8hibuLg4dO7c2eK5Tp064erVq1IvSURERCQLyYVN5cqVcfPmTYvnbty4AQ8Pj2IHRURERGQLyYVNx44dsWLFCpw+fdrseGxsLFauXFngKsJERERE9iZ58PCkSZPwv//9Dy+//DKqVq0KX19fxMfH4/bt26hbty7efPNNe8RJREREVCTJhY2Hhwd27tyJXbt24eTJk3j48CGCg4MxcuRI9OvXL98WC0REREQlRXJhs2fPHrRv3x6DBw/G4MGDzc7Fx8dj8+bNGD16tGwBEhEREVlL8hibmTNn4saNGxbPnT9/HitWrCh2UERliSgISM024v7jTKRmGyHKuN8aEVFZY1WLTXh4OC5fvgwAEEUREyZMgF6vz/e4hIQE1KhRQ94IiVTMIAiI2HUWsZf+2Vsrd/sJLRc1JCKSzOrCZseOHQBydvdu2LAhfHx8zB6j0Wjg5eWFfv36yR8lkQqJFooaAIi9GI+I3WcxkXtrERFJZlVh06RJEzRp0sT08/jx41G9enW7BUVUFqRlGfIVNbliL8YjLcsAN53N+9QSEZVJkgcPL1y40B5xEJU5qenZRZ437bVFRERW4ddBolLi5lL494qizisJB0gTUUlRzycnkcK4OmkRGuCL2Iv5u6NCA3zh6qRVxa7oHCBNRCWJLTZEpUQQRYzvF4zQAF+z47k3fTUMHC5qgDRbbohIbmyxISpFWlHExH7BSMsy5IypcdHB1UmriqIG4ABpIip5/EQhKmWCKMJNp0FFDz3cdBrVFDWAdQOkiYjkJLmwadCgAc6ePWvx3JkzZ9CgQYNiB0VE6lCWBkgTkWOQXNj06dMH3t7eFs/5+PigT58+xY2JiBSmoFlPuQOkLTENkCYikpEgiipq97aSwWDEgwcpxb6OTqeBt7c7EhNTkJ1tlCEyshfmyn6KmvVkEARE7D5rNvurqFlRzJdyMFfKouR8+fi4Q6stuj1Glnbg+Ph43Lt3D4GBgdBq+Q2MqKywZlsItQ+QJiLHIrkrKiUlBTNnzsTmzZsBAPv378ezzz6LAQMGoEePHvjrr79kD5KIHJM1s54AdQ+QJiLHIrmwWbx4MQ4ePGgaZ7NkyRIEBgZi1apV0Ol0WLx4sexBEpFj4qwnInI0kruifvjhB7z11lvo0aMHzp8/j1u3bmH69Ono1KkTsrOz8e6779ojTiJyQJz1RESORnKLTVJSEurUqQMA+O9//wudTofWrVsDAMqVK4eMjAx5IyRSCTXul8RZT0TkaCR/napWrRouXryIsLAwfP/992jcuDE8PDwAAEeOHMFTTz0le5BESqfW/ZJyt4UoaNYTx9IQUUmTXNgMHjwYixYtwpYtW3Dt2jUsXboUADBp0iQcPnwYb7/9tuxBEimZNTOHlFwAKHHWkygIioqXiKwnubAZNmwYfHx88PPPP2PSpEno1q1bzoV0OsydOxeDBg2SPUgiJSsL+yXlznpy89DnHHDgIkGtrWdElMOmkX3du3dH9+7dzY4tW7ZMloCI1MaamUOmgoDsSu2tZ0RkY2Fz7do1HDlyBKmpqTAazVcuFAQBEyZMkCU4IiUpqHuDM4ccR1loPSMq6yR/ou7ZswczZ85EQTsxsLChsqiw7o3cmUN5B9fmfYyrk9ahu27UhK1nROonubBZs2YNWrVqhffffx9+fn4QVDBllag4iuremNQvmDOHHARbz4jUT/K7+Pbt25g7dy6qVKlij3iIFKeo7o3Uv7s3lDZzSI3YekakfpI7k2vXrs39oIjysHZbAe6XVPpy1915clFBtp4RqYfkFps333wT8+fPR7Vq1dC4cWM4OzvbIy4ixWD3hrIocd0dIrKe5E/cBQsWICEhAa+++qrF84Ig4Ny5c8WNi0gx2L2hPEpad4eIpJFc2PTq1csecRApFrcVICJyHJILm4kTJ9ojDiJFY/cGEZFjsKnzPzMzE7t370Z0dDSSk5Ph7e2NsLAw9O3bl2NuqMxi94Zj4X5QRGWT5MImOTkZw4cPx4ULF1C1alX4+vri2rVr+Pbbb7F161Zs27YNnp6e9oiViMgq3A+KqOySPN17yZIluHPnDrZs2YIff/wRX3/9NX788Uds2bIFCQkJWL58uT3iJCKySlELJopcVJRI1SQXNj/88AOmTJmCsLAws+NhYWGYPHkyvv/+e9mCIyKSypr9oIhIvSQXNikpKahevbrFc9WrV0dSUlJxYyIispm1CyYSkTpJLmzq1KmD//znPxbP/fDDD6hZs2axgyIishUXTCQq2yS/w0eOHIk33ngDmZmZ6NmzJypWrIj79+9j37592LFjB+bOnWuHMImIrMMFE4nKNsmFTbdu3XD9+nVERkZix44dAABRFKHX6zFhwgQMGjRI9iCJiKzFBROJyjZBFG17lycnJyM2NhbJyckoV64cQkJCUK5cObnjswuDwYgHD1KKfR2dTgNvb3ckJqYgO9soQ2RkL8yVssiRL65jUzL43lIWJefLx8cdWm3RI2hs7mz28vJC+/btbX26RRERETh+/Dg2b95sOnb+/HksWLAAv/32G8qXL49hw4Zh5MiRsr4uEakPF0wkKpusKmwaNGiAr7/+GsHBwQgMDIRQyDoQtm6C+fnnn2PFihVo2rSp6VhiYiJGjBiBzp0747333sPp06fx3nvvoXz58ujfv7/k1yBSM7ZQEBFZWdhMmDABlStXNv13YYWNVHfv3sXs2bNx6tQp1K5d2+zc9u3bodfrMXfuXOh0OtStWxdxcXH49NNPWdgQ5cGVdomIclhV2OTd+HLSpEmyBvD777+jXLly2Lt3L1avXo1bt26ZzsXExKBp06bQ6f4Js0WLFli7di0SEhJQoUIFWWMhUqKiVtqdyAGzRFSG2DTG5saNG8jIyEC9evWQnJyMZcuW4a+//sLzzz+PPn36SLpWx44d0bFjR4vn7ty5A39/f7NjlSpVAgDcvn27WIWNTid5CZ98cgcxWTOYiUqXmnOVnF7USrtGeLloSziq4lFzvtSGuVKWspAvyYVNVFQUxo8fj2HDhmHGjBl499138f3338Pf3x8zZ85EVlYWXnzxRVmCS09Ph16vNzuWu3t4RkaGzdfVaAR4e7sXK7a8vLxcZbsW2Zcac3Uv7kGh59Mzs1GzilcJRSMvNeZLrZgrZVFzviQXNhEREWjTpg0mTJiAR48e4dChQxgzZgxef/11LFu2DF988YVshY2LiwsyMzPNjuUWNG5ubjZf12gUkZycWqzYgJyK18vLFcnJaTAYlDVtrqxRc65c9IW/jV30OiQmFn95g5Kk5nypDXOlLErOl5eXq32me1+4cAFr1qyBh4cH9u/fD4PBgK5duwIAWrdujc8++0x6tAXw8/PDvXv3zI7l/pw7mNlWcs7fNxiMilsPoKxSY65cnTRFrLSrUezvrMZ8qRVzpSxqzpfkTjZnZ2dkZ+dsInf06FFUqFABgYGBAID79+/Dy0u+Ju+mTZvi1KlTMBj+2Y33+PHjqF27NgcOE/0td6Xd0ABfs+NcaZeIyiLJLTbPPPMMNm7ciIcPH+LAgQPo168fAOC3337DqlWr0KRJE9mC69+/P9avX4/Zs2dj1KhROHv2LDZt2oT33ntPttcgUgOtKGJiv2CuY1MCuF4QkWOTXNjMnDkT4eHhmDp1KurVq4dx48YBAMLDw+Hi4oKpU6fKFlyFChWwfv16LFiwAH379oWvry+mT5+Ovn37yvYaRGrBlXbtj+sFETk+m/aKEkURCQkJqFixounY6dOn0bBhw3yzmBwR94oqe5grZXHEfImCgFUW1gsCcoqbsrpekCPmigqm5HxZu1eUTRPZBUGAq+s/U8UOHDiA2NhY/PXXX7ZcjojKGFEQkJptxP3HmUjNNkKUcTVzOViKLy2rqPWCDBbPEVHJktwVde3aNYSHh6Nbt26YMmUKli1bhnXr1kEURXzyySfYuHEjnnnmGXvESkQq4OjdOQXF91KXgEKfl5qe/U83IBGVGsktNosXL4ZWq0WnTp2QlZWFL7/8Ei+88AJiYmLQtm1bfPLJJ3YIk0i9HL31Qk5Fbf9Q2r97YfFlFdFs7+Zi00LuRCQzye/EkydPYsGCBQgKCsLx48fx6NEjDBo0CB4eHnjppZdk30uKSM0cvfVCbtZ057jJsN2JrQqL7+zl+0WsF6TlgG0iByD5EyQrKwvlypUDABw5cgSurq6mrieDwWC2YSWRHNTaouHorRf2kJqeXeT51Gwj7iSl4+a9RzCUcJ1QWHx7o65gTO8grhdE5OAkVyEBAQH4/vvvUatWLezfvx9t2rSBTqdDVlYWtm7dmm/TSqLiUFKLhtT1TYpuvTACEFW1XkpR3TWZ2UZMX/xf088lnevC4kvPNMAoGrleEJGDk1zYTJ48GePHj8fWrVuh1+sxevRoAEDXrl1x//59REZGyh4klU1FtWg40vRaWwqwolov7iamYv6GaKuvpwSuTtoCu3NC6vvi7OX7ZsdKOteFxRca4AsXnZbrBRE5OMldUa1atcK+ffuwZMkS7N+/H0FBQQCAV155BTt27ECrVq1kD5LKJqVMr7W1S6mo1osnn6WGLqrCtn/o1bYO9kZdyfecksw1t6cgUj6bBsRUr14d1atXNzv2yiuvyBIQUS5rxmM4wvRaWwfEFtV6cSEuUdL1lOKf7R+MSEnLgouzFnonLY6evlXgc0oy19yegsg2jrLdiFWFzfDhw/Huu++ibt26GD58eKGPFQQBmzZtkiU4KtuKatFwlOm1thZgua0DEbvPmhU3oQG+6NG6Dj7eEiPpekpiBLBh729mBWFIfV9MGxqGj7fEID3TvIWmpHPN7iYiaRxpPKRVnxZ5d10oagcGG3ZoILKoqPEOjjK9tjgFmKXWAZ1WgynLjuS7uVv7eo6uoK67M3/k/NyrXV1sP3zJdNyRck0lz1FaAahgjjYe0qpPyM2bN1v8byJ7KqxFw5HGOxS3AHuydUAUBDSo7ePwBZ2tCuu6O/NHPHq3q2P62dFyTSXLkVoBqGCOtj6Vsr/6Uakq7jcpa56vhPEOchdgSinobFVU1527ixM+mtgGnu56uOg0EA3K2qiP5GGvVgC2AMnP0cZDSi5sbt26hfnz5+OXX37Bo0eP8p0XBAHnzp2TJThyXMX9JiXl+UoY7yB3AaaEgs5WRXWlubvq4OWi+2cH4hKKixyLPVoB2AJkH442HlLyq7399ts4ffo0+vfvj/Lly9shJHJ0xf0m5Wj9sXKRuwBTQkFnC6u67qjMk7sVQK2fO47A0cZDSi5sTp8+jXfeeQf9+vWzRzykAMX9JuVo/bFUsqzralPuWj0kD7lbAfi5Yz+O1n0uubDx9fU17RVFZVNxv0k5Wn8slTw1d7WRPORuBeDnjn050ntacnkaHh6O1atX49atghfTInUr7jcpR+uPJevJuSFpbldbRQ893HQaFjVkRu5VoPm5Y3+O8p6WnMkOHTpg/fr16Ny5M3x8fODi4mJ2XhAEHD58WLYAyfEU95uUo/XHknWUMvCSs17UQ85WAH7ulB2SC5uZM2fixo0baN26NXx9fYt+AqlOcftTHa0/loqmlIGXSim+yHpyDaLn507ZIbmw+fnnnzFnzhwMHDjQHvGQQhT3m5Qj9cdS0ZQw8FIpxReVHn7ulA2SCxsvLy9UrVrVHrGQwlj6JiWlG0Ct05mVQkqulDDwUgnFF5U+fu6on+TCZvDgwVi3bh0aN24MDw8Pe8RECsVuAOWQmislDLxUQvFFRPYn+dPo9u3bOHfuHNq0aYM6derkK264u3fZxG4A5bAlV0oYeKmE4ouI7E9yu+y1a9fQoEEDBAUFwd3dHaIomv1jNHJfl7LImm4AKh65plrbkiu5p97aQ27xZQlXNCYqOyR/heHu3mQJuwHsS85uPltz5egDLznrhYiAYuzu/fDhQ8TExODevXvo2rUrkpKSULt2bQjFWLCLlKusdAOUxhopcnfzFSdXjj7w0tGLLyKyP5vuNmvWrMHatWuRnp4OQRAQHByMZcuWISkpCRs3boSXl5fccZKDU8IYjOIqrcHRcs/2UXuuHL34IiL7kjzGZsuWLVi5ciVGjBiB7du3Q/z7Q+OVV17BjRs3sHz5ctmDpJIndTyHEsZgFEdRrSa2jHex9m9sTdeRFGrPFRGVbTaNsRkzZgxef/11GAz/DDJs27YtpkyZgnXr1uGdd96RNUgqWba2TKi5G0DuVhMpf2N7dPOpOVdEVLZJbrG5ffs2mjVrZvFcnTp1cP/+/WIHRaWnuC0TpbkJmpwbND5JzlYTqX9je832cZQN64iI5CT5q16VKlUQGxuLVq1a5Tv322+/oUqVKrIERqVDqau32nv8i5ytJlL/xpztQ0RkPcmFzYABA7By5Uq4uLigQ4cOAIDU1FQcPHgQa9euxYgRI+SOkUqQEqdtWzNrqLjkHHBry9+YXUdERNaRXNiMHj0aN2/exOLFi7F48WIAwPDhwwEAPXv2RHh4uLwRUolS4rTtLKOInm3roGuLWtA7aXAhLhF7o64gPdNgagFx0hYvbjlbTWz9G3O2DxFR0SR/2guCgHnz5uG1117DiRMnkJSUBE9PTzRr1gz169e3R4xUgpQ2FdggCFi727y1JqS+L6YNDcPHW2KQnpnTwuElQ0EmV6tJYX/jkPq+cNbrAK7gTURkE5s/7WvVqoVatWrJGAo5AiWN5yioC+rMHzk/92pXF9sPX5K1lUmOVhNBFDGuXzBW7zxrihXIKWp6ta2D9d/8ijG9GjnU37osKo3FGImo+ByvX4FKnVLGcxQ2CPfMH/Ho3a6Ow+4RlJVtQEBNb/RuVweZWUZTF1puK9OwFxo45CDtsoI71RMpFwsbskgJ4zmKGoQrAnlamRxrq4+UtGxsP3ypwPOOOEi7rCipnerZIkRkHyxsSLGK6mKq7O3msN+uizNI29obYnFvnGX1xlsSSx6wRYjIfljYkGIVPdBZ45AtTYDtg7StvSEW98Yp941XSUWSvZc8KKkWIaKyStLXjt9//x0HDhzAlStXLJ5/8OAB9uzZI0dcREVS8p5HtsRu7YrFxV09Wu59sQyCgFW7zmLi4v9i+qpjmLj4v1i1+ywMMq4MLSd7L3lgTYsQEdnOqnfo48ePMXnyZBw/fhyiKEIQBHTp0gXvv/++2U7eN27cwMyZM9GnTx97xUsOrDS+lStloLMlUmO3toukuF0pcnbFKLF1wt5LHihxEUwiJbGqsFmxYgXOnz+PZcuWoVatWvj++++xfv16DBkyBJ9//jkqVKhg7zjJwZXmmAElDHQuiJTYrb0hFvfGKeeNV4lbdNh7yQMlLoJJpCRWvYN+/PFHTJkyBc8//zwAIDAwEG3atEF4eDhGjRqFzZs3w8PDw66BkuNS4rdyJbL2hljcG6ecN16ltk7YsyVQaYtgEimNVV+VEhISUKNGDbNjTZo0wZo1a3DlyhVMmDAB2dnW725MjsnW3bE5ZqBkWLvLd3F3A5dzN3Elt07Ya/dzJY8NI1ICqz5VqlevjhMnTqBly5Zmx8PCwrBw4UJMnToVM2bMwODBg+0SJNlfcbqSHPFb+ZPjfdy1jtXdYQtru0iK25UiZ1cMWycsU/LYMCJHZ1VhM2TIEMybNw8pKSno3r07QkNDTee6d++Ov/76C4sXL8bp06ftEuStW7fQsWPHfMfff/99vPjii3Z5zbKkuF1JRX3rdnfVlejA4oKKtEkDQ0t8fYPCfm9b/ibW3hCLe+OU68arpC06SpqSx4YROTKrPucHDRqE5ORkfPrppwBgVtgAwKhRo+Dh4YGFCxfKHyGAixcvwtnZGYcPH4aQp3vE09PTLq9X1hR3gGdh38qbP10ZTjotVpXQwOLCirSV22MxeUCIrK9XmIIKrAn9giECNreQWXtDLO6NU64bb/4iyQk6rYCkxxlwdWZLBRHJy+ovsKNHj8aoUaPw+PFji+dfeukldO7cGUeOHJEtuFyXLl1C7dq1UalSJdmvTcXvSirsW/mo3kGI2HmmxAYWF1WkpWQY4Kaz//ophRVYpy/fx09nbhf4N5nQPwQale3unVskOXs6c8VdIrIrSS3zgiDA09MTDx8+xF9//QVRFFGlShWUL18eAFCxYkX0799f9iAvXryIevXqyX5dyiHHAM+Cui7SMrMLLDTOX3uALKOIbINRti6qoou0rBIZ71NYgeXj5VJo8XXnQSoqe7uq7kbP2XNEVBIkFTbHjx9HREQETp06BTHPB9AzzzyDsWPHok2bNrIHCOS02Pj6+mLw4MG4fv06atasifHjx6Nt27Y2X1Mnw9oZ2r8HpGoVPjDVXaspdICnu7MOWisbOZy0OnjlKYQSHlkuNFz0WkwbGoa1//rV4rd3Z2tf8AluLk6Fnnd3dZIl90VJfZxZ4LnMrMJbYx6nZmHXf/7A5AEhVv/dlSA5vaguTyO8XHJmXKnlvVUWMFfKUhbyZXVh8/nnn+PDDz9ElSpVMHToUNSsWRNarRZ//vknfvjhB4wePRrTpk3Da6+9JmuAmZmZuH79OlxdXTF9+nS4ublh7969GD16ND777LN8M7WsodEI8PZ2ly1GLy9X2a5VWiYNDMXK7bH5upImDwxFxfK2/34pBdzEe7Wri71Hr+LMH5a/vU8bGgZPN+ktK7rUzEKLNG8vF5uuK1VBvzcA6J0K/0DRO2kQezEe6dlGPFVJPePI7sU9KPR8emY2albxMjumhvdWWcFcKYua82VVYXP27Fl8/PHHGDZsGKZNmwYnJ/NvxVOnTsWSJUuwZMkShIWFITg4WLYA9Xo9Tp48CZ1OB70+54bUqFEjXLlyBRs2bLCpsDEaRSQnpxY7Nq1WAy8vVyQnp8FgUPaYCB2AyQNCkJJhyOmucXGCu7MWWtGIxMQUm6/rorPcGhRY0xvbD1+y+JzYi/F48DAd2RlZNr1mQeN9Jg8MhZhtKPL3MYgw/R3cXZ3gptdKbjkp6PcGgAfJ6QWeC6nviwtxiQCARymZxfrbOxoXfeEfNy56nen3VdN7S+2YK2VRcr68vFytammyqrDZtGkTmjZtilmzZlk8r9FoMG3aNFy6dAlffPEFFi9eLC3aIri5ueU75u/vj2PHjtl8zexs+RJqMBhlvV5pctMJpjEoosEIOZZdtFRoFDWSIjU9y+ZBvlog33gfd2cdKpZ3RWJiSqG5knNriIIKrMb1KiKkXsV850Lq+6JX2zr4eEsMgJyxTWr5/woAXJ0K7/J0ddLk+33V9N5SO+ZKWdScL6sKm19++QVvvvlmkY/r168fPvroo2IHldeFCxfw8ssv49NPP0VYWJjp+G+//cYBxQphaWAxUHjRUtwVaZ+cqmxNi4vcg1uLWgtmQv8Q3HmQisepWdA7aXAhLhEfb4lBeqZBlYvXcU2bsqc0NsYlsurucf/+ffj5+RX5OF9fXzx4UHg/ulT+/v6oX78+3nvvPbz77rvw9vbG9u3bcfr0aezcuVPW1yLrSf3AerLQEAXB4VakTc82oH4Nb/RsWweZWUZTsbE36orNGzYWthaMxmhEZW9X7PrPH2XmRs8Vd8uO0twYl8o2qwobHx8f3Lx506zFxJJbt27B19fyHjO20mg0iIyMxOLFizFlyhQkJyejYcOG+OyzzxAQECDra1F+lgoYEcDqYn5gOeK3d42gwcW4RLOxPyH1fTFtaBg+3hJjl60hyuKN3lFX3GXrgnw4tZ9Kk1WFTfPmzfHll1+id+/eZiv/5iWKIr788ku0atVK1gCBnMLqgw8+kP26VLiCvnG92NEf56+bt8zZ8oEl5029uDclURCwbs/ZfLO0cn/u1a5ugd1jxX1tR73RlyVsXZBXcVczJyoOqwqbkSNHon///nj77bfxzjvvwMXFxex8eno65s6diwsXLmDBggV2CZRKVmHfuIzGnBv9k7OabPnAKuymbm3BYM1NySACN+89wqOUTIvXKuyD+Mwf8XixU32L3WO8ISofWxfk54gb41LZYVVhExAQgAULFmD27Nk4fPgwWrZsiaeeego6nQ63bt3C0aNHkZqaikWLFqFu3br2jplKQFE3+t7t6lg8J9cHlrUFQ1E3pUn9gmEAELHjTKHXKuqDWK/T5Lu58YaoDmxdkJ8cq5kT2crq/7t69+6N+vXrIzIyEseOHTPtGeXq6oqOHTsiPDwc/v7+dguUSlZRN/rc1XNd9Fr0alcXgTW9kZllhKtzzk7elooAa7trpBQMBd2UXPRa1K/ujUyjmG91Y0vXsuWDmDdEdWDrgvwK2xhXjTP+yLFIKpsbNmyIFStWQBRFJCUlQRRF+Pj42Cs2KkVF3ej1ThrTtgh7j14165bK1w0ksbtGSsFg6aaUN67Amt5WXcuWD2LeENWBrQvyc8TJAVR2SP46mZqaCkEQ4O3tbSpqzpw5I3tgVLpyb/SWhAb44kFyepHbIoiCUGTri2hhMLo1BUMuSzedvHEVtS9T7rVyP4if/J0L+yDmDVEdivp/3dVJW8IRqUPu5IBVUzvgo4ltsGpqB0zk2DMqAVYXNufPn0efPn3w+eefmx1/+PAhXn75ZXTv3h1XrlyROz4qJUXd6JvUq4g2IVXzFTW5cltDrGl9eZKUgsHSTSmwprcprqL2Zcp7LakfxLwhqoMtRS1ZJ3dyQEUPPdwsjFMjsgervlLeuHEDr776Ktzc3PKt9qvX6zFr1ixs2LABgwcPxjfffGPVYn7k+J6cju3irINGEJCZbYCLTouMTOtbVgp7zJPdNa56XeHdQnodYMxpibHU5J23leZCXCJC6vtaLMAsdTFJmXqtpOZ2rtFSuLK4nhCRWllV2Kxbtw7e3t746quvUL58ebNzrq6uGDp0KF544QUMGDAAkZGRmDt3rh1CpdIgiCKcnbTYsPf3fGNkwvsGw0WvRXpmTquLpYHETjqN2WOeZKl1JttoxIsd/WE0wqwgCamfs4ZOttGIvNuwWirAcu2NuoJpQ3MWlrR0Ldt2oyr4tR3xhsgp6dbhekJE6iCIYtHv3s6dO2Ps2LEYMGBAoY/74osvsHXrVhw8eFC2AO3BYDDiwYPi75qs02ng7e1e5MaKSiYKAlZZGCMD5NwcWwdXxaodZ8wG7OYtIHIX9Ju34US+4iY0wNdshlNuq0K2UcRbq46ZFUl5tzf4cGIbeOoL7uYRBQGr8rSi5C24RBHwdHNCzIV72Bt1BYsnt1X1zKWi8ueoU9LLwntLLZgrZVFyvnx83OXb3Ts+Ph41a9Ys8nH+/v64c+eONZckhShqjMxrPRshNMAX9at7FziQGABG9W6EVTv+GWT+ZHdN3laFt4Y3RXqmId8CgLnSMwyFFjZPdhHlXit39+w5646biiy1z1zilHQiKmus3ivq3r17RT7uwYMH+bqqSNmKGieTlp6Fif2CkVJIIRJ7MR4jezbCqqkdLHbXPDlzqqgBv+6uToWeB/7pIkrJNOB2fEq+3bNzqX3mEqekE1FZY9WnetOmTbF7925079690Mft2bMHDRo0kCUwcgzWzFASRBHpGUXdQLNyZkZYGL/wZKtC0QN+NVaNfxBEEe56LQ5GXy+zC4VxSjoRlTVWtUEPGzYM0dHRWLRoETIyMvKdz8zMxIcffoijR49iyJAhsgdJpcfaKc3FuYE+2aqwN+oKerWtg5D6xZ9+W9an8nJKOhGVNVYNHgaArVu34oMPPoCXl5dpryiDwYDbt28jOjoaiYmJeP311zF27Fh7x1xsHDwsjUEQCpzSrM3TnbTqicfkfWxhg1RTs42YuPi/ZsfyDvh1d3GCu2vxZhsJWg3Ss40FboKpZtbkz9GUlfeWGjBXyqLkfFk7eNjqwgYATp06hQ0bNuCnn34ytdy4u7ujTZs2eO211xASEmJ7xCVIbYWNPdYoyXtNd1cdnJ10SM/MLvQ1bL2BFqcospaj5Kq0KG0dm7KeLyVhrpRFyfmyS2GTV2JiIjQaDcqVK2fL00uVmgqbgtYoCe8bjEcpGXB1ln4TK866J7beQO3dquAIuSLrMV/KwVwpi5LzZffCRsnUUtgUtkZJSH1fBNT0xvbDlyQVCKW57ok9WxVKO1ckDfOlHMyVsig5X9YWNlzAQsEKW6PkzB/xCKzpDaDwDSetvaaLXov61b2RkmlA/KNMPMo0IlME0gwi0gxGq65dFEfcV0YUBKRmG3H/cSZSs+X5PYmIyH4411PBilqjJO+eSdYuxmbpmnlXFc67Vk1IfV8M6uyPjCwDvjt+DaN6NSpWt5GjjQPhVgRERMrDwkbB8k6hfnKfJr2TBuU9nc32abJmMTZL07J7tatrcVXh3J/bhFRFzSrlELH7rM1dVY5WRDy5aGCu3NYvR92KgIiorGNXlILlrlGS26JyMS4R8zZEY9EXJzFvQzS+2H8e04aGwUWff62ZgrpYLK17EljT2+JieUBOcVOhnAvCAivh/LUHSMvKv9llUd05RRURlh5v7+4ha7YiICIix8MWGwXLXXzuzOX7FltUTl+KhyjmtLj8cSPRtMpuUa0jefdZAsy7tCzJzDLikZiFaUPDkJaRDTfdP61C1rTESNnPqKRadrgVARGRMrHFRuG0oojAmj6FtqgE16toWmXXmtYRrShifP8QvD+2Fd4a3hSVK7gVGoPeSQNBAPYevQpPN2fTcWtbYqwpIqRcTw7cioCISJn46awCKelZhZ7X6zTQ/l3UpGQW3Tri6qRFxM4zpscN7OyPxv6+OF3AtPKEh+mIT0rDmT/ikWUwQP9364q1LTHWFhEluVN1bpdcWd1jiohIqdhio3CiICCriLUI3Fx0MPy9Ps3t+MLX70lNz85XQOTu3RTqbz72JndWVMXyrtgbdQUAkJKWbXatol4LsH4/I2uvZ4lBBG7ee4Q7SelWjcsp63tMEREpFVtsFKKgqdBpWQb8fi0Bof6+BS6q56rXYdXfLTA929Yp9HXcXHT5CoT0TAM+2hyDvs/Ww2s9n8aj1Cy4OOsAiIg5fxe7/3PZNPMqb+uLtS0xgoVxPbmx5y0ibO0eMggCInackTwuRyuKmNgv2KGmoBMRUeFY2JQya9ZuKWzAbFpGNgQAL3byh1GE2VibkPq+eLGjP7KNRpy//gADO/vDw9UJ77zWHIIAXIhLxN6oK6aipLDdntMzDfjy4EXUrVYe+ywMVM59PTdnHWDMaUGS0p1jTRFhS/dQcadt5y4aaBoozKKGiMihcUuFYiju0tTWzPApaouD8D5BuH0/BR9tjsm3jk1u4fLRpDaIT0w3mznlotdiZK9GqPdUedxLTIWHmxMqebtBazQWuillq6AqGNatASJ3/4qLcQ9MrymKQGUfN7g6/bNisCgISM0y4l5iKgTkFFLfn7iOoS80QEBNH6SlZ0luBZG6p5SlncPzWjW1g2zjckg+Sl72vaxhrpRFyfmydksFttiUEmtbEooaMJttECEip0Ul76rAeWkETb6iJncl4dU7z5geV9iUbyCnRaZT0xqY++lxhPcLQdUKwVj7r7Nmr2vqPgKw+onfr/nTlfHhpLaI3HUWq3ZYft2iSO0e4rRtIqKyhYVNKbF2hk/RN+YsVPIufDq2URTNuo4KWkk4b1H1TwFhxN3EVPh4ueD4r3/h4y0xSM804ML1B/jmyJUCr9E6uGq+369mlXKI2Hm20Ne1puVGSvcQp20TEZUtbIMvJdbO8LHmxuzmpCl0VlF6hvlrFbaScN5VdXOKDBHzN0Tj+K9/4WJcomk8TlHX8PFyyXfc2teVk7UzroiISB34dbWUWNuSYM2AWeHvBfXuPkjF49Qs0/iauL8eYlSvRsjMNmBgZ3/T+BtvTxcM7OxvNnA4r7zdM7kF1t6oK5g2NAxAzgBla1YjtuZYQa8rF2tnXBERkTqwsCkFoiBAp9VYNcPHmhuzQRDMFtTLPT/u7y4lJ50WF+MS8+3MPX1YGC7fTEK9p8qbDTh2d80/ZTs904CPt+QMUO7drg7Ke+ZvkclL75S/MdDSsbzs1S2kFUVMHhCC9GwjHqVkcto2EZGKsbApYbkzoc5ff4BpQ8NgNJpP0bbUkpA73iU92wBRFGAURaRnZCMjywAXvQ7r9/xqcRDymt1nMaF/CNbsPGNxZ26NALQKrop5G6JNx0Pq+6Jz0+qmcSt5W4zyDlAe2NkfIfV9LXYthQb44kFyer7jF+ISC32OPVfz1QrAU5U8/5kJwKKGiEiVWNiUoCdnQuVtAREBVPY2ny6d93np2QZoBA3WffNrvpaZHq3r4Mzl+/m6lWIvxiM1I7vgQcoWFuw780dOQZQ7kLegFqO4vx5iwoBgrCmoJenv/5b0HBYbRERUTCxsStCTM6GenKK9amoHszVg0rIMSEnPRrbBiLQMAw4ev26xZcZozJnpZGm696PUwveRsjTu5cl9l/JOsU7LyIanmx7ZBhFJjzIwsmcj6PoIeJSaCVdn8y6egqZlczVfIiKyFxY2JcjaNVUsLtzn74seberg1yv5W2bO/BGP3u0sb5VQ1LiVgsa9PDmQN3eKtbOTc+GLCuYpUAqals3VfImIyF443duOREFAarYR9x9nIjXbCC93PVz05tOLXfRaDOzsjzkjm8MoAhkiLC/cdykee49eRa92dS2+lqWWl9ydt0PqW57uHFLfFxfiEi2es1QQFbWoYFEbSxIREdkbW2zspKDtEj6a2BYPktORnmmAs16Lch56fHnwoqkbac7I5gWOiSmsZcbDzcns55D6vujVtg5Wbo/FpIGhpuebYvH3xYud/DFvw4l81ypoIK+1iwoSERGVFhY2dlBYy4bR+DsCanqbCpmQ+r7o3a4O6tcoj3pPlYezvvCUuOh1mDOyudkGlqH+vvDxcsackc3hotchPTMbF+ISTasE5x2knHv+j5tJKO+pR0BNnyJnZeXi9gREROToWNjYQVqW0epWlyenXc8Z2bzQa6dnZmPehmiE1PfFtKFh+O74dfTtUA/JjzNx+WYSsg0iLsYlmhUruYOUQ+r7mhVVtauUQ0BNb/RuVwfuLk5wdy18IC+3JyAiIkfHfgM7SEmzfiaSi16L+jW8Ua96ebw1vCk83PSYMCAk31gcwHxMzJk/4vHtT1fxUtcAzNtwAl8euoTmT1fB3qgr6NW2Tr5xNbldU3ujrpiO6bQCth++hH3HrqKilzPcdPmnmufF7QmIiMjR8Su2Hbg4F36Dr1zBDQM7++P7E9cxaWAo9h69ar5Dtr8v5oxsgXkbTphmQOUWJh9viTE9LvZiPIZ3a4j0TMPfLTQiFk9ui7SMbIzrF4S0DAMeJKdDEGDWNZV7vQtxiZLWkOH2BERE5OhY2NiBi16Lxv6+OG2hOyqkvq9pQ8k5o1pg07/P59/t+lI8RAAfjG+NjMyctWOeLExypeUZ95KeYYCvpx5uOj1EQcBnhy7guea18E3U1XzjaMb0CYLRaETXptUlFSRarkNDREQOjIWNTHJXBwYEOGk1GNjJH6JoPhMpb6tLeqYBqen1C9zt+vSlePRqWwcVy7tiZsRPBb6ua55xLe6u/8yMEkQRo3o1wvq9v5nG0WRmGeHh5oTKPm7QGo2AVmPTGjJch4aIiBwVCxsZZBhEbPr3OfTrWB9ajQaffnMWF64/QK92dfFqj4a4m5Bq2mAyb6vL4yJWBRZFINtgLHB/pdx1aoDcMS7mhYpWFDGmV6N/Wle8/25dMRa+yzYREZFSKWLwsNFoxIoVK9C2bVuEhITgtddeQ1xcXGmHBQB4lJqJ9d/8hr7P1semf59HwsM0nL6Us2Hk3qgrSEvPxqIvTmLehmhsP3zJrCupqN2ufbxc8OEXJzG6TyOLg4FH92mEVdtjCx3jktu6UtFDX+TgYCIiIqVTRItNREQEvvrqKyxcuBCVK1fGxx9/jNGjR+Pbb7+FXl+666Y8eJiOmlXLYcuBnLEyL7SsZTrXq11dGAspJC7EJSLU39fi1PDQAF/8fP4O7j5Iw1ffX8DEF0OQlpGN1LRsuLnq4KLXIjklA++PbcUxLkRERH9z+BabzMxMbNy4EZMmTUL79u0RGBiIZcuW4e7duzh06FCpxmYQgbuJqQis6W0qTvK2wgTW9MbZy/cL3NIg7vZDDH2hgcXWmLF9g+Ff3Rsrpz6LEd0aQms0wsNJg0peeng4aaATRfi4sRWGiIgoL4dvsblw4QJSUlLQokUL0zEvLy80bNgQJ0+eRPfu3W26rk6Gpf8fZRggwHxdmrytMJlZRuyNuoJpQ8MA5B9IPLRbQ7wT+ROea1HLtCqwURRRsbwrvjp0AYO7BsJZk7v/EvdhKg6tVmP2b3JszJdyMFfKUhby5fCFzZ07dwAAVapUMTteqVIl/PXXXzZdU6MR4O3tXuzY7sU9wIW4RATXq2g6tjfqCpa83g7r9vwGvZMm35YGmVlG00DihKQ0JD3OxPbDlxAa4IvwPkEQBAGAiNF9guHpxu0J5Obl5VraIZAEzJdyMFfKouZ8OXxhk5aWBgD5xtI4Ozvj4cOHNl3TaBSRnJxa7NhcnXXYG3UFncKqm1pp0jMN+OnsbbRpXBXlPZ1Nx/MuwAfArPspd/Cvs/af1pnsjCwkZhQ+a4qsp9Vq4OXliuTkNBgMnBXm6Jgv5WCulEXJ+fLycrWqpcnhCxsXFxcAOWNtcv8bADIyMuDqanvFmZ1d/IS66bVoUNsHP529hRE9ngb+/TtiL8Zj938uY/qwMHx96CJ6tKkD4xPr2YQG+GJ07yCkpGWiXeOqpsG/2dkcK2NvBoNRltxTyWC+lIO5UhY158vhC5vcLqh79+6hRo0apuP37t1DYGBgaYUFANAKwKSBoVi7+wxqVy2PtiHV8HKXAGQbRLi66DCix9PINooY1bsRRFFEWkY29E5a/HknGXqtABd3LnBHREQkJ4cfPRQYGAgPDw9ER0ebjiUnJ+PcuXMICwsrxchy+JZ3xdg+Qajk7Qr/Gt5wcdZBq81ZfdhJI8BNK8DNSQONkDP810kroFEtH2hYzBAREcnO4Vts9Ho9hg4disWLF8PHxwfVqlXDxx9/DD8/P3Tp0qW0wwOQ03Ljmmd8jIeTeUsMtyAgIiIqGQ5f2ADA5MmTkZ2djbfffhvp6elo2rQpNmzYUOqL8xEREZFjEUSx7DUfGAxGPHiQUuzr6HQaeHu7IzExRbWDsNSCuVIW5ks5mCtlUXK+fHzcrZoV5fBjbIiIiIisxcKGiIiIVIOFDREREakGCxsiIiJSDRY2REREpBosbIiIiEg1WNgQERGRarCwISIiItUokwv0iaIIo1GeX1ur1Shu6/eyirlSFuZLOZgrZVFqvjQaAYIgFPm4MlnYEBERkTqxK4qIiIhUg4UNERERqQYLGyIiIlINFjZERESkGixsiIiISDVY2BAREZFqsLAhIiIi1WBhQ0RERKrBwoaIiIhUg4UNERERqQYLGyIiIlINFjZERESkGixsiIiISDVY2NjAaDRixYoVaNu2LUJCQvDaa68hLi6utMNSpaSkJMyZMwft2rVDkyZN8PLLLyMmJsZ0/vz58xg6dCgaN26MDh06YMOGDWbPtyZXclyDzF27dg2hoaHYvXu36Rhz5Xj27NmDbt26ISgoCN27d8eBAwdM55gvx5GVlYVly5ahQ4cOCA0NxeDBg/HLL7+YzjNXTxBJspUrV4otW7YU//vf/4rnz58XX3vtNbFLly5iRkZGaYemOiNGjBB79eolnjx5Urxy5Yo4f/58MTg4WLx8+bL44MEDsXnz5uLs2bPFy5cvizt37hSDgoLEnTt3mp5fVK7kuAaZy8zMFPv16yf6+/uLu3btEkVRnr8zcyWvPXv2iA0aNBA///xz8fr16+KqVavEwMBA8ZdffmG+HMzy5cvF1q1bi0ePHhWvX78uzp49W2zSpIl4584d5soCFjYSZWRkiKGhoeK2bdtMxx4+fCgGBweL3377bSlGpj7Xr18X/f39xVOnTpmOGY1GsUuXLuInn3wiRkZGim3bthWzsrJM55csWSJ27dpVFEXrciXHNcjckiVLxGHDhpkVNsyVYzEajeKzzz4rLlq0yOz4a6+9JkZGRjJfDqZXr17iwoULTT8/evRI9Pf3F7/77jvmygJ2RUl04cIFpKSkoEWLFqZjXl5eaNiwIU6ePFmKkamPt7c31q1bh0aNGpmOCYIAURTx8OFDxMTEoGnTptDpdKbzLVq0wLVr15CQkGBVruS4Bv3j5MmT+Prrr/Hhhx+aHWeuHMvVq1dx69Yt9OzZ0+z4hg0bEB4eznw5mPLly+M///kPbt68CYPBgK+//hp6vR4NGjRgrixgYSPRnTt3AABVqlQxO16pUiX89ddfpRGSanl5eaF9+/bQ6/WmYwcOHMCff/6JNm3a4M6dO/Dz8zN7TqVKlQAAt2/ftipXclyDciQnJ2P69Ol4++238/29mCvHcv36dQBAamoqRo4ciZYtW+LFF1/Ejz/+CID5cjSzZ8+GTqdDp06dEBQUhGXLluGTTz5BjRo1mCsLWNhIlJaWBgBmN1sAcHZ2RkZGRmmEVGacOnUKs2bNQqdOndCxY0ekp6dbzAMAZGRkWJUrOa5BOebOnYvGjRvnawUA5Pk7M1fyefz4MQBgxowZ6NGjBzZu3IjWrVtj/PjxOH78OPPlYK5cuQIvLy+sXr0aX3/9Nfr164cZM2bgwoULzJUFuqIfQnm5uLgAADIzM03/DeQk39XVtbTCUr3Dhw9j6tSpCAkJwdKlSwHk5CIzM9PscblvMjc3N6tyJcc1KGd2TUxMDPbt22fxPHPlWJycnAAAI0eORN++fQEADRo0wLlz5/DZZ58xXw7k1q1bmDZtGj7//HOEhYUBAIKCgnD58mWsXLmSubKALTYS5TbF3bt3z+z4vXv38jXlkTy2bNmCSZMmoV27dvj0009Nbyw/Pz+LeQCAypUrW5UrOa5BwK5du5CQkGCajhoaGgoAePfdd9G9e3fmysHk/j38/f3NjterVw83b95kvhzI2bNnkZWVhaCgILPjISEhuH79OnNlAQsbiQIDA+Hh4YHo6GjTseTkZJw7d85UTZN8tm3bhvnz52PIkCH45JNPzJpCmzZtilOnTsFgMJiOHT9+HLVr10aFChWsypUc1yBg8eLF2L9/P/bs2WP6BwAmT56MdevWMVcOpmHDhnB3d8eZM2fMjl+6dAk1atRgvhxIblFx8eJFs+OXLl1CzZo1mStLSntalhItXbpUbNasmXj48GHTfP7nnnvOIefzK9nVq1fFp59+WpwwYYJ47949s3+Sk5PF+/fvi02bNhVnzJgh/vHHH+KuXbvEoKAgcffu3aZrFJUrOa5BluWd7s1cOZ7Vq1eLoaGh4r59+8S4uDgxIiJCDAwMFE+cOMF8ORCDwSAOHjxYfP7558Xjx4+L165dE5ctWyY2aNBAjI2NZa4sYGFjg+zsbPGjjz4SW7RoITZu3FgcPXq0eOPGjdIOS3XWrFkj+vv7W/xnxowZoiiK4pkzZ8SBAweKjRo1Ep999llx8+bNZtewJldyXIPyy1vYiCJz5Yg2btwoduzYUXz66afFXr16iYcOHTKdY74cR1JSkjh37lyxQ4cOYmhoqDho0CAxOjradJ65MieIoiiWdqsRERERkRw4xoaIiIhUg4UNERERqQYLGyIiIlINFjZERESkGixsiIiISDVY2BAREZFqsLAhIiIi1WBhQ0Ql5vDhw7h582Zph0FEKsbdvYnI7q5cuYLNmzfj8OHDeOqpp/D8889j8ODBZnt/ERHJgSsPEynQlStXsG3bNhw7dgx37tyBTqdDvXr10KtXLwwcOBBOTk6mx3bs2BG3bt0y/azRaODu7o769evjpZdeQu/evc2u/eTjAUCv18PPzw/PP/88Jk6cCGdnZ6tj/fXXXzFkyBDUqlULQM6mfv/73//QunVrrFmzBoIgmB577tw5DBkyBNHR0aosesaNG4eQkBCMHTu2tEMhUi222BApzP79+zFz5kzUqVMHI0aMQO3atZGeno4jR45g4cKFiIqKQmRkpFnB0L59e4wfPx4AkJ2djcTEROzfvx/Tp0/HhQsXMGPGDLPXyPt4AMjIyEB0dDQiIiJw69YtLF261Op4V69ejYoVK2L79u2YO3cu+vbtiy5dumD27NmIiYlB06ZNTY89cuQIWrRoocqiJjMzEydOnMCkSZNKOxQiVWNhQ6QgV65cwcyZM9GqVSusXLkSOt0/b+H27dujefPmmDx5Mv7973+jR48epnM+Pj5o3Lix2bW6dOmCChUqYOPGjejcuTOeeeaZQh/fvHlz3LlzB7t378Zbb72FSpUqWRXztWvXEBwcDBcXF9Ox559/Hk5OTqhevbrZY48cOZKvBUktTp48CXd3dzRo0KC0QyFSNQ4eJlKQ9evXQ6PR4P333zcranJ17doVffr0gUZj3Vt78uTJ0Ov1+Oqrr6x6fKNGjSCKIv766y8AwMqVKxEQEFDogGA/Pz/89ttvyMjIMB3z8PBA79694efnZzr28OFDnD17Fu3atQMADBs2DG+99RbWrl2L1q1bo0mTJhg3bhxu3Lhhdv1Lly4hPDwcTZo0QZMmTTBhwgSzx0RHRyMgIABfffUVnn32WbRq1QrHjh3DgwcPMHXqVLRu3RpBQUHo3bs39uzZY3bt69evY/LkyWjdujUaN26MYcOG4dSpU6bzN2/eREBAAA4cOIDJkycjNDQUTZs2xezZs5GSkmJ2raioKLRt2xYGgwFt2rTBm2++me9v9cILL2DmzJmmn3fs2IHu3bujUaNG6NChA1auXIns7Gyz5+zYsQP9+vVD48aNERwcjN69e2P//v2m87t370bDhg2xY8cOtGnTBu3atcMff/xRYL6IlI6FDZGC/PDDD2jRogUqVKhQ4GM+/PBDdOvWzarreXl5ITg42OxmXZhr164BgKml5cUXX8TXX39daOvNa6+9hlu3bmHgwIG4ePEiEhISLD7u2LFjqF27NqpVq2Y69sMPP2DXrl2YPXs25s2bhwsXLmD48OFITU01xfPSSy8hISEBixYtwoIFC3Djxg28/PLL+V5n2bJlmDFjBmbMmIHGjRtj2rRpuHz5Mt577z2sW7cODRs2xIwZMxAdHQ0AuHz5Mvr164cbN27g7bffxuLFiyEIAl555RX8/PPPZtd+9913Ua1aNURERGDUqFHYtWsXIiMjzR5z5MgRtGvXDjqdDn369MHhw4fx+PFj0/kzZ87g6tWr6NevHwBg7dq1eOedd9CyZUtERkZiyJAh+PTTTzFnzhzTc7Zu3Yo5c+agU6dOWLt2LT7++GM4OTlh2rRpuH37tulxBoMBkZGReP/99zFlyhTUq1evwHwRKZ5IRIqQlJQk+vv7i4sWLcp3Lisry+yf7Oxs07lnn31WnDFjRoHXnTx5shgcHGz2+OnTp5td786dO+L27dvFRo0aia+//rrk2KOjo8WhQ4eKgYGBor+/v/jcc8+Jhw4dMnvMtGnTzH63oUOHig0bNhTj4uJMx37//XfR399f3LJliyiKovjGG2+ILVu2FB89emR6TGJiovjMM8+YrnXixAnR399fXLp0qdnrNWrUSIyIiDD9bDAYxEWLFoknT54URVEUX3/9dbFZs2ZicnKy6TFZWVli165dxQEDBoiiKIo3btwQ/f39xalTp5pde9iwYWKPHj1MP//5559iw4YNxYcPH4qiKIpXr14V/f39xZ07d5oe8+6774qdO3cWjUajmJycLIaEhIhz5swxu+727dtFf39/8dKlS6IoiuLChQvFjz76yOwxv/32m+jv7y/u27dPFEVR3LVrl+jv7y9u375dJCoLOMaGSCGMRqPF43FxcXjuuefMjlWrVg0//vijza+1Z8+efN0yOp0OXbp0wdy5cyVfr1mzZti8eTPeeusteHt749ixY5g8eTJ27tyJhg0bQhRFHDt2DEuWLDF7XmhoKGrUqGH6uWHDhqhevTpiYmIwZMgQnDhxAs2bN4eLi4upi8bDwwNhYWH43//+Z3atgIAAs5+bN2+OlStX4sKFC2jfvj3atWtnNoj6559/xrPPPgtPT0+zv0H37t2xevVqs66mJ8cj+fn5mc0si4qKQuPGjeHl5QUAqF27Np555hl888036N+/PzIzM7F//3688sorEAQBsbGxSEtLQ8eOHc26njp27AgA+Omnn1C/fn289dZbAIBHjx7h+vXruH79Oo4fPw4AyMrKMovJ398/X16I1IiFDZFCeHt7w83NLd9U7CpVqmDnzp2mn1evXo1Lly5Zfd27d++ajXUBgGeffRYTJkwAAAiCAFdXV1SrVs1sALCtOnTogAkTJqBTp0746quvMG/ePPz6669IS0szG8AMwGIXV4UKFZCcnAwASEpKwv79+83GlOTy8fHJ97y8li1bhsjISBw4cADfffcdNBoNWrVqhblz56J69ep4+PAhKlasmO+6FStWhCiKZt1Irq6uZo/RaDQQ86ykkdsNldeAAQMwa9Ys3L59G2fOnEFycjL69u1r+r0AYMyYMfleHwDu3bsHAPjzzz8xZ84cnDhxAjqdDnXq1DEVcOITK3kU1n1JpCYsbIgUpFOnTvjxxx/x+PFjeHh4AMhZYyYoKMj0mPLly1t9vYcPH+L333/PNxOpfPnyZte0VWpqKqZMmYLOnTtj4MCBpuMeHh6oXr266QYdFRWFli1b5pvmnXuDz+v+/fumVhxPT0+0atUKI0aMyPc4S4Or8/L09MS0adMwbdo0XL16FT/88AMiIiLw3nvvYf369ShXrhzu37+f73nx8fEAcgrN3PgLk5GRgZ9//hn/93//Z3b8+eefx/vvv4+DBw8iNjYWLVu2RNWqVQHA1LKzePFi0/o/eVWsWBFGoxFjxoyBk5MTtm/fjoYNG0Kn0+Hy5cvYu3dvkXERqRUHDxMpSHh4OAwGA2bNmoXMzMx859PT0/PNGipMZGQksrKyMGjQIDnDNHFzc8O5c+ewe/dus+OJiYm4cuUK6tSpAyCnsGnfvn2+58fGxuLBgwemn3///XfcvHkTLVu2BJDTxXX58mU0aNAAQUFBCAoKQqNGjfD555/j0KFDBcZ169YttG/fHt999x0AoE6dOhg9ejRatWqFO3fuAACaNm2K//znP3j06JHpeQaDAf/+978RFBRk9Vo70dHR8PDwyDfN283NDd26dcO3336Lo0ePmlprACAkJAROTk64e/eu6fcKCgqCk5MTlixZgps3byIxMRHXrl3DgAEDEBwcbCrkoqKiABTcdUmkdmyxIVKQ+vXrY8mSJZgxYwb69OmDgQMHIiAgANnZ2YiNjcXOnTtx//59jBo1yux5Dx48wOnTpwHk3JwTEhJw8OBBfPvttxg7dqzNrTN37tzBnTt30LBhwwJv9KNGjcLChQsxY8YM3Lt3DydPnsTHH38MjUaDV155BQ8ePMCvv/6KTz75JN9z09LSMHr0aIwbNw4pKSlYtmwZ/P39TWv0jB8/Hi+99BLCw8Px8ssvw9nZGV9//TUOHz6MFStWFBh3tWrV4Ofnh/fffx+PHz9GjRo18Ntvv+HIkSMIDw8HAEycOBFRUVEYPnw4xowZA71ejy1btuDGjRtYv3691X+jqKiofN1QuQYMGIBBgwbBw8PDbJyUt7c3Ro0aheXLl+Px48do3rw57t69i+XLl0MQBAQGBsLT0xPVqlXD1q1b4efnBy8vLxw7dgybNm0y/e2IyiIWNkQK07lzZ+zduxdffvkldu7ciVu3bkEURVSvXh3dunXDSy+9lK/74siRIzhy5AiAnC6aihUrwt/fH5GRkXj22WdtjmXHjh1YtWoVfvjhBzz11FMWH/Pqq69CEARs3boVcXFxOHnyJIKCgvDZZ5+hcuXK2Lt3L+rWrWvqhskrLCwMLVq0wOzZswHkDJ6dPn26qYgKDAzE1q1bsWzZMkyfPh2iKMLf3x+rV69Gp06dCo191apVWLp0KZYvX47ExERUqVIFEydONI1rqV+/PrZt24alS5di1qxZEAQBwcHB+OKLLxAWFmb13ygqKgpvvPGGxXONGzeGt7c3nnvuuXzjl6ZMmQJfX19s27bN1DXWsmVLvPHGG6YBzREREViwYAHeeust6PV61KtXD2vWrMEHH3yAmJgYDBs2zOo4idSCe0URUYmZMWMG+vXrh+bNmxf52Nyb8ubNm+0dVqk5e/YsXnzxRezatQuNGjUq7XCIVIEtNkRUYrp06WK2AF9ZFR0djejoaOzZswctWrRgUUMkIxY2RFRiOnfuXNohOITExER89tlnqFevHhYuXFja4RCpCruiiIiISDU43ZuIiIhUg4UNERERqQYLGyIiIlINFjZERESkGixsiIiISDVY2BAREZFqsLAhIiIi1WBhQ0RERKrx/y1TUPvnHCw8AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.scatterplot(data=CO2vGDP[CO2vGDP['Country']!='Qatar'], x='GDP', y='CO2')\n",
"plt.xlabel('GDP: $/person/year')\n",
"plt.ylabel('CO2 emissions: tonnes/person/year')"
]
},
{
"cell_type": "markdown",
"id": "36a341c1",
"metadata": {},
"source": [
"We no longer have an obvious outlier, but we do have a problem, called heteroscedasticity\n",
"\n",
"Heteroscedasticty is when the variance of the data in $y$ depends on the value in $x$. In this case, CO2 emissions are more variable for high income countries (which can be high- or low poluting) compared to low income countries\n",
"\n",
"This property violates the assumptions of Pearson's correlation coefficient, so for these dataset we would be better off using Spearman's rank correlation coefficient, as explored in the next section."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ffff910",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}