{
"cells": [
{
"cell_type": "markdown",
"id": "278f1daf",
"metadata": {},
"source": [
"# Paired Samples t-test"
]
},
{
"cell_type": "markdown",
"id": "741220b6",
"metadata": {},
"source": [
"### Set up Python libraries\n",
"\n",
"As usual, run the code cell below to import the relevant Python libraries"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "692abf91",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Set-up Python libraries - you need to run this but you don't need to change it\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import scipy.stats as stats\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"sns.set_theme(style='white')\n",
"import statsmodels.api as sm\n",
"import statsmodels.formula.api as smf"
]
},
{
"cell_type": "markdown",
"id": "d5c9ed34",
"metadata": {},
"source": [
"## Example\n",
"\n",
"\n",
"\n",
"A scientist hypothesises that watching horror movies raises the heart rate in human subjects. \n",
"She measures the heart rate of 20 volunteers watching a horror movie, \n",
"and the same volunteers watching a cookery show.\n",
"\n",
"This is a repeated measures design, which is a form of paired design"
]
},
{
"cell_type": "markdown",
"id": "9edf419d",
"metadata": {},
"source": [
"### Inspect the data\n",
"\n",
"Let's load the data.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0f18b874",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
cookery
\n",
"
horror
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
60.4
\n",
"
72.9
\n",
"
\n",
"
\n",
"
1
\n",
"
53.9
\n",
"
57.0
\n",
"
\n",
"
\n",
"
2
\n",
"
54.4
\n",
"
68.3
\n",
"
\n",
"
\n",
"
3
\n",
"
60.0
\n",
"
57.4
\n",
"
\n",
"
\n",
"
4
\n",
"
67.7
\n",
"
58.7
\n",
"
\n",
"
\n",
"
5
\n",
"
56.2
\n",
"
47.0
\n",
"
\n",
"
\n",
"
6
\n",
"
61.9
\n",
"
71.8
\n",
"
\n",
"
\n",
"
7
\n",
"
58.9
\n",
"
62.1
\n",
"
\n",
"
\n",
"
8
\n",
"
65.6
\n",
"
68.6
\n",
"
\n",
"
\n",
"
9
\n",
"
54.6
\n",
"
73.8
\n",
"
\n",
"
\n",
"
10
\n",
"
85.2
\n",
"
93.1
\n",
"
\n",
"
\n",
"
11
\n",
"
87.8
\n",
"
94.8
\n",
"
\n",
"
\n",
"
12
\n",
"
90.5
\n",
"
111.4
\n",
"
\n",
"
\n",
"
13
\n",
"
92.7
\n",
"
89.7
\n",
"
\n",
"
\n",
"
14
\n",
"
85.4
\n",
"
97.4
\n",
"
\n",
"
\n",
"
15
\n",
"
77.5
\n",
"
90.9
\n",
"
\n",
"
\n",
"
16
\n",
"
81.3
\n",
"
83.9
\n",
"
\n",
"
\n",
"
17
\n",
"
79.7
\n",
"
86.9
\n",
"
\n",
"
\n",
"
18
\n",
"
96.8
\n",
"
90.1
\n",
"
\n",
"
\n",
"
19
\n",
"
81.9
\n",
"
75.4
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" cookery horror\n",
"0 60.4 72.9\n",
"1 53.9 57.0\n",
"2 54.4 68.3\n",
"3 60.0 57.4\n",
"4 67.7 58.7\n",
"5 56.2 47.0\n",
"6 61.9 71.8\n",
"7 58.9 62.1\n",
"8 65.6 68.6\n",
"9 54.6 73.8\n",
"10 85.2 93.1\n",
"11 87.8 94.8\n",
"12 90.5 111.4\n",
"13 92.7 89.7\n",
"14 85.4 97.4\n",
"15 77.5 90.9\n",
"16 81.3 83.9\n",
"17 79.7 86.9\n",
"18 96.8 90.1\n",
"19 81.9 75.4"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# load the data and have a look\n",
"heartRates = pd.read_csv('https://raw.githubusercontent.com/jillxoreilly/StatsCourseBook_2024/main/data/HeartRates.csv')\n",
"display(heartRates)"
]
},
{
"cell_type": "markdown",
"id": "e9d1c259",
"metadata": {},
"source": [
"### Scatterplot\n",
"\n",
"In the case of paired data, the most effective way to get a sense of the data is a scatterplot:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7487e866",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/RElEQVR4nO3dd3xUdfb/8de905KZSSOkQCiBkBA6KE1ZFwRULKgIdlhFsHf9rqjsiuwuuj/XSlERFEGxgYpdV8GGIEUFFiEQwFACJJCQMpNMvff3R0wkJIEEMiXJeT4e+1i5dzL35BKYN+d+iqLruo4QQgghRAuhhroAIYQQQohgkvAjhBBCiBZFwo8QQgghWhQJP0IIIYRoUST8CCGEEKJFkfAjhBBCiBZFwo8QQgghWhQJP0IIIYRoUYyhLiDc9O/fH4/HQ0JCQqhLEUIIIUQ9HTp0CLPZzPr160/4Wgk/x3C73fj9/lCXIYQQQogG8Pl81HfTCgk/x0hMTARg+fLlIa5ECCGEEPU1YsSIer9WxvwIIYQQokWR8COEEEKIFkXCjxBCCCFaFAk/QgghhGhRJPwIIYQQokWR8COEEEKIFkXCjxBCCCFaFAk/QgghhGhRJPwIIYQQokWRFZ6FEEIcl6bp7MotpsTpIdpmpnNKDKqqhLosIU6ahB8hhBB12ph9iKUrssnNd+DzaxgNKimJdsYNT6dPumwALZomeewlhBCiVhuzDzFn6UZy9pcQYTEQF2UhwmIg50AJc5ZuZGP2oVCXKMRJkfAjhBCiBk3TWboim3KXj/gYCxaTAVVVsJgMxEdbKHf7WLoiG02r3y7aQoQTCT9CCCFq2JVbTG6+gyibCUWpPr5HURSiIk3k5jvYlVscogqFOHkSfoQQQtRQ4vTg82uYDLV/TJiMKj6/RonTE+TKhDh1En6EEELUEG0zYzSoeP1aree9vorBz9E2c5ArE+LUSfgRQghRQ+eUGFIS7ZSWedH16uN6dF2ntNxLSqKdzikxIapQiJMXduHn+eefZ8KECTWO//bbb/Tt25d9+/ZVO+52u5k+fTpnnHEG/fr146677qKgoCBY5QohRLOkqgrjhqcTaTFSUOLG7fGjaTpuj5+CEjdWi5Fxw9NlvR/RJIVV+Hn11VeZOXNmjePbtm1j4sSJlJeX1zj36KOP8sMPPzBr1iwWLlzI3r17ufvuu4NRrhBCNGt90hO4fVwfUttE4/L4OVLqxuXxk9ommtvG9ZF1fkSTFRaLHObl5TF16lR++uknOnXqVO3cCy+8wIsvvkhaWhoHDhyo8XXLli1j7ty59O/fH4Cnn36aUaNGsWHDBvr27Rusb0EIIZqlPukJ9EprLSs8i2YlLDo/v/76KzExMXz44Yf06dOn2rnvv/+e//znP0yZMqXG1/30008ADBo0qOpYp06dSEpKYt26dYEtWgghWghVVejSPpbTMhPp0j5Wgo84abqm1RhDFgph0fkZPnw4w4cPr/XcG2+8AcCaNWtqnMvLyyMuLg6LxVLteGJiYo0ukRBCCCFCx5WXT/Zzs0gaOZzE4WeHtJawCD8nq7y8HLO55jRLi8WC2+0OQUVCCCGEOJqu6xz6+ht2vfQy/vJyXAcO0vqsP6GaTCGrqUmHn4iICDyemgtsud1uIiMjQ1CREEIIISp5S0rY+fyLFKyueHoTldmV9HvuCmnwgSYefpKTkykqKsLj8VTrAOXn55OcnBzCyoQQQoiWrXD9T+yY9TzeoiIUg4EO11xFyphLUAyGUJcWHgOeT9bpp5+OpmlVA58Bdu3aRV5eXtXsLyGEEKJUtuEIqvL9+9n6r8fxFhUR2b4dvZ/8N+3GXRYWwQeaeOcnKSmJCy+8kL/97W889thjREZGMm3aNAYOHCjT3IUQQqDrOsVODy63jyjZiiNoItu2JeXSi9H9fjpOuBa1lvG5odSkww/AP//5Tx577DHuuOMOAP785z/zt7/9LcRVCSGECDW/plNU6sbt8aHI9PyA0nw+9i15l4ShZxHZti0AHa+bgKKE531X9HCYcB9GRowYAcDy5ctDXIkQQoiT5fdrHCl14/b6gYq1itrE20JcVfNUtncf25+ZiXPnTqK6ZtDr3zNQ1OCPqmnI53eT7/wIIYQQR/P6/BSVuvH4at+RXjQOXdM48Mln7F70OprHgzHKTttLRock+DSUhB8hhBDNhtvjo8jhxueXhxqB5D5cQPbM2RRv3ARAbL++dLnzdizxrUJcWf1I+BFCCNEslLu9FDs8+DUJPoHk/C2H/019BL/TiWo2kzrxOpLPPy9sx/fURsKPEEKIJs9Z7qHE6UWTYawBF9kuhYjkJBRVJf2eu7C2Swl1SQ0m4UcIIUSTVur04Cj3IA2fwCn+dQtRGemoJhOqyUT3vz2MMToK1dg0Y0T4j0oSQgghaqHrOkUON6USfALG73az66WX2fzw39n7ztKq4+ZWcU02+IB0foQQQjRBmlYRfFxuH5J7AqM0ewfZz86kfF8uAP6yMnRdb1Jje+oi4UcIIUST4vdrFJW6cf2+ho9oXLrfz75332fvW++g+/2Y4uJIv+t24k7rF+rSGo2EHyGEEE2G16dRVOqSNXwCxHXwINuffo7SbdsBiB9yBmm33IwpOirElTUuCT9CCCGaBLfXT3GpG69fgk+g6JqGM2c3BpuVzjfdSMLQs5rFY65jSfgRQggR9lweH0WlblnDJwD8LheGiAigYkPSrn+9D1tqRywJCSGuLHBktpcQQoiw5iz3cKREgk8gHF61mp9uupXizb9WHWs1oH+zDj4gnR8hhBBhStd1SpwenC4vsnZh4/I5neya9wqHvv4GgP0ffkRMzx6hLSqIJPwIIYQIO36/RrHTI1PZA6B4869kPzsT96HDoKq0u+xS2l91RajLCioJP0IIIcKK2+Oj2OGRgc2NTPN62f36G+z/4CPQdSKSk0i/5y6iu2WGurSgk/AjhBAibFRsVSF7dAVC4dr17F/2IQBJ54wk9YbrMVojQ1xVaEj4EUIIEXKaplPsdFPu9sn4ngCJP3MwSeedQ9zppxM/aECoywkpme0lhBAipPx+jSMlLspcEnwakysvj6wnnsRbWgqAoih0ue2WFh98QDo/QgghQsjr81NU6pYVmxuRruvkL/+aXfNeRnO5MFgiSL/7jlCXFVYk/AghhAgJt8fHEYcbv1/aPY3FW1zMjjkvUrhmLQDR3bvR/qrLQ1xV+JHwI4QQIujKXF5KnB5ZuLARFa5bz45Zz+MtLkYxGulwzVWkXHoxisEQ6tLCjoQfIYQQQVUxo8uD5J7Gk/fVcnbMeh4Aa4f2pN97N/bOnUJcVfiS8COEECJoih1uWbE5AOIHD2LPm+/QesgZdBx/DarZHOqSwpqEHyGEEAGn6zpFDpnK3lg0r5fDK38gYdhQFEXBaLfTb9azLXbdnoaS8COEECKg/JpOUakbt0e2qmgMZXv2sv2Z53Du+g3dr5E0cjiABJ8GkPAjhBAiYPx+jSOlbtxef6hLafJ0TePAx5+Ss+h1dK8XY5Qdo80W6rKaJAk/QgghAsLr0ygqdckaPo3Afegw2TNnU7zpfwDEntaP9Dtvx9wqLsSVNU0SfoQQQjQ6j7di8ULZnPTUFaxZS/Zzs/A7y1DNZlJvuI7kUeehKEqoS2uyJPwIIYRoVG6PjyOlblnDp5EY7Tb8ZeXY09PJuPcuIlPahrqkJk/CjxBCiEZT7vZS7JDFC0+Vp/BI1SOtmB496PHo34np1VMWLGwksrGpEEKIRuEo91BUKsHnVPjdbnbOncdPt95Bee7+quOxfftI8GlE0vkRQghxSnRdp8TpkcULT1Fp9g62P/0crv0VoefIzz/LI64AkfAjhBDipGlaxeKFLres4XOydL+fvUveZe/bS0DTMLdqRZe7bieuX99Ql9ZsSfgRQghxUnx+rWLxQlnD56SV5+5n+zMzcWRnAxA/5EzSbr0JU1RUiCtr3iT8CCGEaDC310+xTGU/ZYe++x5HdjYGm5W0m2+i9Z//JFPYg0DCjxBCiAaRGV2nRtf1qoDT7vKx+EodpIy5BEtC6xBX1nLIbC8hhBD1JjO6Ts3hH1bz67R/oHm9AKhGI51vmiTBJ8ik8yOEEOKEZEbXqfE5nex66WUOffMtAAc//4K2oy8KcVUtl4QfIYQQxyW7sp+a4v9tZvuzs/AcPgyqSruxY0gedV6oy2rRJPwIIYSok9dXsUdXU92cVNd1Nmw/xOZdBVxwZiq9uyQE7dqax8PuxW+y/4OPQNeJSE4m/Z47ie6WGbQaRO3CaszP888/z4QJE6od27p1K+PHj6dv374MGzaMl19+udp5TdOYOXMmZ511Fn369OGGG25g9+7dwSxbCCGapXK3l4Liprsre4nTzdz3/8fc9//HDxv389ir69CD+Mxu54vz2L/sQ9B1ks47h77PPinBJ0yETfh59dVXmTlzZrVjR44cYeLEiaSmpvLuu+9y55138txzz/Huu+9Wveb555/nrbfe4l//+hdvv/02iqJw44034vF4gv0tCCFEs1Hq9FDURDcn1XWddVsOMn3+GjZsP1R1vFW0JajTyNtdPpaI5GS6/e0hutx2C4bIyKBdWxxfyB975eXlMXXqVH766Sc6depU7dw777yD2Wzm0UcfxWg0kpaWxu7du5k3bx5jx47F4/Hwyiuv8Ne//pWhQ4cC8Mwzz3DWWWfx5ZdfcuGFF4biWxJCiCZL03SKnW7K3b4mObC5xOnmzS+28ctRoQcgo0McUyb0D+i1XQcPcuSXjbQ5v2I8T2SbZE57fqbsyRWGQt75+fXXX4mJieHDDz+kT58+1c6tX7+eAQMGYDT+kdEGDx7Mb7/9RkFBAVlZWTidTgYPHlx1Pjo6mu7du7Nu3bqgfQ9CCNEceH0ahSUuylxNL/hUdXvm/Vgt+FhMBq46tyv3XXsaia2sAbt23pdf8cvd97PrxZco2vS/qnMSfMJTyDs/w4cPZ/jw4bWeO3jwIBkZGdWOJSYmArB//34OHjwIQJs2bWq85sCBAwGoVgghmie3x0eRw43P38RSDxXdnje+2FbtERdARodY/nJBd1rHRqIG6HGXp6iYnc+/QOGain9wR3fvRkRSYkCuJRpPyMPP8bhcLsxmc7VjFosFALfbTXl5OUCtrykuLg5OkUII0cSVubyUOJvewoW6rrN+ax5v/XcbTpev6rjFZGDM2V34c7+UgIUegII169g55wW8xcUoRiMdrr2alEtGS7enCQjr8BMREVFj4LLb7QbAarUSEREBgMfjqfrvytdEysAyIYQ4oVKnB0e5hyaWeyh2uHnzvzW7PV07xDHhgm60jg3sZ8Bvr7xaMYUdsHbsQMa9d2PrlBrQa4rGE9bhJzk5mfz8/GrHKn+dlJSEz+erOtahQ4dqr8nMlOmEQghRl6Y6sPl43Z7Lzu7CWQHu9lSydUoFRaHtJaPpeO3VqMc8gRDhLazDz4ABA3jrrbfw+/0Yfm8jrl69mk6dOhEfH09UVBR2u501a9ZUhZ+SkhK2bNnC+PHjQ1m6EEKELa9Po6i06a3fU2e3p2McE84PbLdH83pxHczD2r4dAAnDhmLr1AlbaseAXVMETliHn7FjxzJ//nymTp3K5MmT2bRpEwsXLmT69OlAxVif8ePH8+STT9KqVStSUlL4z3/+Q3JyMuecc06IqxdCiPBT7vZS7PTgb0IDmytmcuXx9peh6faU7dnD9qdn4ikqot/MZzBFR6EoigSfJiysw098fDzz589nxowZjBkzhoSEBB544AHGjBlT9Zq77roLn8/H3/72N1wuFwMGDODll1+uMQhaCCFassqNSctc3iY1vqfYUTGTa2N28Mf26JrG/o8+Yfdri9G9XoxRUZTn5mKKlmEVTZ2iB3Ot7yZgxIgRACxfvjzElQghROPw+jRKHG7cXn+T2ZhU13XW/t7tKWuEbo+qKrSJt9X79e5Dh8h+bjbF/9sMQNzpp9Hlztswx8XV/5sQQdWQz++w7vwIIYQ4Nc5yD6Vl3iY1jb2i25PFxuzD1Y4HY2wPQP4337HrpXn4nWWoFgudbriepPPOCerWGCKwJPwIIUSY0DSdXbnFlDg9RNvMdE6JQVVP7gPX79codnpweZrObK46uz1mA2PP7sJZfVOCEkCKfv4Fv7OMqK4ZpN9zJ5Ft2wb8miK4JPwIIUQY2Jh9iKUrssnNd+DzaxgNKimJdsYNT6dPekKD3svt9VNc6sbrbzqzuULd7dH9/qrFCTvfNBlb5060HX2hLFjYTEn4EUKIENuYfYg5SzdS7vIRZTNhMpjw+jVyDpQwZ+lGbh/Xp94ByOnyUtqEVmsOdbfH73KR8+preAoKyHx4CoqiYLTbSLn04oBdU4SehB8hhAghTdNZuiKbcpeP+BhL1Qe9RTVgjlYpKHGzdEU2vdJaH/cRWOVsLqfL22Qec9XV7cnsGMf4IHR7Srdns/2Zmbj276/49bbtRGd2Deg1RXiQ8COEECG0K7eY3HwHUTZTjQ6HoihERZrIzXewK7eYLu1ja30Pv6ZTVOrG7fE1idlcld2ed45dtydI3R7N52PfknfZ+85S0DTM8a1Iv+sOCT4tiIQfIYQIoRKnB59fw2Qw1XreZFRxlFdsPFobr89PUam7yazWXOxws/jzLDbtCE23p2xfLtnPzsSRvQOA1n/+E2k334jRbg/odUV4kfAjhBAhFG0zYzSoeP0aFrXm4Fqvr2Lwc7St5sKtTWm1Zl3XWfvrQd7+anvIZnLpmsa2J56kbPceDDYbabfcSMKfzwroNUV4kvAjhBAh1DklhpREOzkHSjBHq9UCgK7rlJZ7SW0TTeeUmOrHnV6crqaxG3uouz2VFFUl7dab2fv2ErrccRuW1vFBua4IPxJ+hBAihFRVYdzwdOYs3UhBiZuoSBMmo4rXp1Fa7sVqMTJueHrVYGe/X6PI4cbtCf/VmsOh2+NcvxbN5SLmz0MBiO6WSY9H/x7Qa4rwJ+FHCCFCrE96AreP61O1zo+j3IvRoJLaJrraOj9uj49ih6dJrN8T6m6Pv8xJ4eLXcK5ZjWI2Y+3aFeLTAnpN0XRI+BFCiDDQJz2BXmmt61zh2VFWsU2FFubz2MOh21O+dQuHX5mH/0ghKArR556PMb51QK8pmhYJP0IIESZUVakxnd2v6ZQ43ZS7w3+bijq7PamtmHB+JvExge32aF4PRe8tpeTLLwAwJibRetJNRKR1QTnJbUJE8yThRwghwpTH66fYEf7T2I/X7Rk3PJ0/9Wkb+JlcPh8HHvsn3r17ALAPPZtWl1+FGhER0OuKpknCjxBChKEyV8XaPuG+TUWouz2VFKMRa9/TKC0upvX1N2Dt3Tco1xVNk4QfIYQIM6VOD47yk5/Grmk6e/NKcZR5sVtNtE+KOund4eui6zprfj3IO19up8wdmm6PNz8P3e/H3KZi1/XYC0cTPXwkhqiogF5XNH0SfoQQIkzouk6x00PZKezPlZVTyOc/5pBXUIZf0zCoKknxVkYNTiUztVWj1FlUWrEnV6i6Pbqu4/j+WwrffgNjYhJtH34ExWRCMRol+Ih6kfAjhBBhoGL9Hs8p7c+VlVPI4i+ycLl92CJNGA1GfH6d3EMOFn+RxbXnZZ5SAKqr2xNhNjA2SN0ef3Exhxe+QvmmDQCokZFo5eUYTLVvDyJEbST8CCFEiLk9PkqcnlMa2KxpOp//mIPL7SPWbq4KIWajgslmpsjp4fMfc8joEHdSj8CKSivG9vxvZ/VuT7fUVkw4vxutYgI/sNj5y08ULFqAVloKRiNxY8YSfc4oFFUN+LVF8yLhRwghQshR7qHUeerr9+zNKyWvoAxbZO27w9ssJvIKytibV0rHNtH1fl9d11mz+SDvfBW6bo/m8VD4xms4Vn4HgKldexIm34y5XfuAXlc0XxJ+hBAiBBp7/R5HmRe/pmE01P7XutGoUObWcJR56/2e4dDtgYqZXN6DByoWLDzvfOIuuQxFHnOJUyDhRwghgiwQ6/fYrSYMqorPr2M21uzE+Hw6BlXFbj1xaDhet2fciHSG9A7Cuj1eLzo6qsmMoqq0nnQT/iOFRGRkBvS6omWQ8COEEEHkdHkpDcD6Pe2TokiKt5J7yIHJZq6xO7zT7SUlwU77pOPPhqqr29O9UyvGjwpOt8ezby+H5s8lMrMbra66FgBTQiKmhMSAX1u0DBJ+hBAiCDRNp6Ts1KaxH4+qKowanMriL7IocnqwWUwYjQo+X0XwiTQbGTU4tc7Bzrqu8+PmgywJZbdH0yj58guOvL8UfD78xcXEjL4Ug80W0OuKlkfCjxBCBJjX56eotO7HXI21KGFmaiuuPS+zap2fMnfFOj8pCfbjrvMTDmN7fAWHOfzKPFzbsgCI7N2X1tfdIMFHBISEHyGECKATbVPR2IsSZqa2IqNDXL3CVFh0e3Qd5+ofKHjzdfTychSLhVZXXoP9rKEBv7ZouST8CCFEAGiaTmmZB+dxHnMFalFCVVVOOJ39SKmLNz7P4n87C6odD+bYHgDNUUrBm4vRy8uxpHWh9aSbMCUmBeXaouWS8COEEI3M6/NT7PDg9vrrfE2gFyWsS2W3552vtlMeom7P0QxR0cSP/wu+w4eJGXUBisEQtGuLlkvCjxBCNKL67sYeqEUJjyccuj2a282Rd94ksk8/rL37AGAfdEZAr6koYGzkjV1F0ybhRwghGkFDZ3MFYlHCuui6zur/HWDJ8uwa3Z7LR2RwZu82Qen2uHft5ND8ufjy8yjb8AsRj/8H1WwO2PUUBUwGFVukiUiLfNyJP8hPgxBCnKKTWbSwMRclPJ4jpS4Wf57F5tq6Ped3o1V04Ls9us9H0ccfUvzpR6BpGOJa0fqGyQELPgpgMqpYI01YLUYZOC1qkPAjhBCn4GQXLWysRQnrUme3x2Lg8uHB6/Z4Duzn8Py5eHbnAGAbdAatrp2Awdr4U9gVwGhQsUYasUXUfJwoRCUJP0IIcRI0Taf4FPbmOtVFCY8nHLo9AN5Dhzjwj0fQvV5Uq4348ddhGzio0a+jAKpBwR5hwhphatQB4qJ5kvAjhBANdKJFC+vrZBclrEu4dHsqmRISsPYfgL+khNbXT8IY1/Bp+ydiMFQMDrdGmjBI6BH1JOFHCCEaoNztpdjReHtzNWRRwuMJl26Pc/1aLOkZGGNiAYifMBHF1PiPoAyqgi1CQo84ORJ+hBBhS9N0duUWU+L0EG0z0zklJqSPNEqdHhzlHhp5T9J6LUpYl3Dp9vidTgoXL8K59kcie/cl8c57UBSl0Qc1G1SFSIsRe6QJg0Ft1PcWLYeEHyFEWNqYfYilK7LJzXfg82sYDSopiXbGDU+nT3pCUGs51fE9gVJXt6dH53iuHZUZtG5P+ZZfObxgHv4jR0BVMXdMBV2vmGveSFRFwRph/H0lbAk94tRI+BFChJ2N2YeYs3Qj5S4fUTYTJoMJr18j50AJc5Zu5PZxfYIWgPx+jaJSN67jrNYcbOHS7dE8Ho68t4TSr/4LgDEpiYRJN2PpnNZo16js9FgjTJiMEnpE45DwI4QIK5qms3RFNuUuH/ExlqoPcYtqwBytUlDiZumKbHqltQ74I7DGGtjcmI7X7Rk/KpO4YM3kyssjf/azeA/sByBq2HDiLr8K1WJplPevDD3S6RGB0ODws2rVKvr27YvVag1EPUKIFm5XbjG5+Q6ibLVv+xAVaSI338Gu3GK6tI8NWB1uj48jDjd+f3g85zpet+eKERmc0Su4M7kMMdHoPi+GmBjir5+EtVefRnlfebwlgqHB4eeBBx5gypQpjB49OhD11MrpdPL000/z1Vdf4XA4GDRoEA8++CAdOnQAYOvWrcyYMYPNmzcTGxvLhAkTmDRpUtDqE0I0nhKnB59fw2SofWVjk1HFUV6xf1agOF1eShwetDAZ4HOkxMXrn2fx667Qdnt8BQUY4uJQVBU1IpLEO+7BEB2DIerkFmI8mqpAhMWIPdLc6I+3wm3gvAi9Bocfs9mMpZHamvV1zz33sG3bNqZPn06HDh149dVXufrqq/n4448BmDhxIiNHjmT69Ols2LCB6dOnExsby9ixY4NapxDi1EXbzBgNKl6/hkWtucO311cx+DnaFpitEUocHpyuxp/RdTJ0XWfVpgMsWbEdl/uPMUeRFiOXj0gPWrdH13Uc331D4dtvEDfuCqKHnwOAOaXdKb+3ooDFZMBuNWMxNf6O7uE0cF6EjwaHn5tvvplHHnmErKws0tPTad26dY3XDBgwoFGKA8jKyuK7777jpZdeYujQoQBMnz6dtWvX8sYbb2A0GjGbzTz66KMYjUbS0tLYvXs38+bNk/AjRBPUOSWGlEQ7OQdKMEerNbZ9KC33ktomms4pMY163XCb0RU23Z7iIgoWvkL5po0AlP/vf0SdPbLBoUvT9GprGXVMjv6902PEYg7M8NNwGjgvwkuDf+KmTZsGwPPPPw9Q4y8mRVHYunVrI5UHv/32GwD9+/evOqaqKpmZmaxbtw6TycSAAQMwGv/4VgYPHszcuXMpKCggPj6+0WoRQgSeqiqMG57OnKUbKShxExVZMcvH69MoLfditRgZNzy9UR9beH0axQ437jCY0RUu3R4A58/rKVi0AM3hAKOJuMvGET3y3AZfPyunkM9/zKGgqJwIiwF7pIWkVlbOG9yRnmk1/wHdGMJp4LwIPw0OP4sWLQpEHXVKSKhI5QcPHiQt7Y/pk7m5ubjdbgAyMjKqfU1iYiIA+/fvl/AjRBPUJz2B28f1qXpc4Sj3YjSopLaJbvTHFY29YvOpCJduj1ZeTuGbr+NYtRIAU/sOJEy++aQec2XlFPLO8u0YVYWURDtGVaGkzMvGHYfYtudIwLov4TJwXoSnBoefgQMHBqKOOvXp04e0tDSmTZvGf/7zH+Lj43njjTfYunUr7dq1Q9M0zMesIFo5JqkyHAkhmp4+6Qn0SmsdsIGquq5T4vRQ5vKGfHxPOHV7ALx5B3H8uAoUhZhRFxB78RgUU+0D0I9H13R+3HwAe6SJqEgTLq8fh6fi+2sVZQlo9yUcBs6L8HVSD1p/++03Zs2axZo1aygpKSEuLo7+/ftz++23V+vONAaTycScOXN48MEHGTZsGEajkWHDhjFu3Dg2b96Mx+PB46n+w1sZemQ6vhBNm6oqAflXudfnp9jhweP1E+p+T7h0eyqHLQBYUjvR6urxmNu1JyI94wRfWTuDQeGIw0NhsQtN1yk+JmQEuvsS6oHzIrw1OPzs2LGDq666CqPRyNlnn03r1q05dOgQX3/9Nd988w1Llixp9ADUqVMn3n77bYqLi1EUhejoaO6++25SU1MpKSkhPz+/2usrf52UlNSodQghmj6ny0upM/SPuY7X7bliZAaDeyYHrdvj2buHwwtfofV1N2BuX7GESPTZI07qvY7ecPTgISeHisqJi7LU2tkJZPclVAPnRdPQ4PDz5JNP0q5dO1577TWijlrbobS0lOuuu45nnnmG2bNnN1qBDoeDW265hQcffJCePXtWXWvVqlVMnTqV/Px83nrrLfx+PwZDRbpfvXo1nTp1kvE+Qogqfk2nJExmcxWWVKzSfGy3p2daxZ5ccVFB6vZoGiX//Zwjy94Fn4/Cd94i+f4HTuq9VFXBesyGo3Zr6LovoRg4L5qOBq8ktW7dOm655ZZqwQcgKiqKm266iXXr1jVacQB2ux1FUXjsscfYtm0bWVlZ3HLLLbRt25aLLrqIsWPH4nA4mDp1Kjt27OC9995j4cKF3HzzzY1ahxCi6XJ7/RQWl1PmCm3w0XWdHzbu5x8v/1gt+ERajFx3YXduH9cnaMHHe/gQB5/8N0eWvg0+H5F9+5Fw4y0Nfh9VUbBFmmgdE0mM3VJtp/XK7ktpmRf9mBtf2X1JSbQHrPtSOXA+tU00Lo+fI6VuXB4/qW2iuU2mubdoDe78VK6rUxuz2Vxj/E1jeOqpp/jXv/7F+PHjUVWVs88+mwceeACj0Uh8fDzz589nxowZjBkzhoSEBB544AHGjBnT6HUIIZoeR7mHUqc35Ks119Xt6ZUWzzXB7PboOo5VKyl883V0lwvFEkGrq6/FPuSsBj1mUxWwmCs6PeY6FicMh+5LoAfOi6ZJ0Y+N4ycwefJkdF1n/vz5NZ6hTpo0Ca/Xy2uvvdbohQbLiBEVz7mXL18e4kqEEKciXBYtDKexPQDOn9Zz6IVZAFi6pNN60k2YEhLr/fVVKzJHmuq9OKGssiyCoSGf3w3u/Nx9991cffXVXHTRRZx//vkkJCRw6NAhPvvsM3bv3s2CBQsaXrEQQjSicNmNvbDExeufbWXLb4XVjge723M0a7/TiOjWnYhuPYgZdQGKWr/RD4oCZqMBu9VERANXZJbuiwg3DQ4/vXr1Yv78+Tz11FPMmTOnanpkz549mTdvXqNubSGEEA0VDrux67rOD5v2s3R5Ni5PaLs9mstF8RefEnP+RahmM4qqknTvXxsUekwGFbvVRKSl4Wv9VArUsgVCnIwGh59ly5YxePBglixZQnl5OSUlJURHRxMZGRmI+oQQot7CYTf2wmIXr38eHt0e184dHJ4/F9+hfLTycuKvuhagXsFHAYwGFZvVhNViDOqjOSECrcHh5/HHH2fGjBkkJycTGRkpoUcIERZKnR4c5aHbjV3XdVZu3M+7K0Lf7dF9Poo+Wkbxpx+DrmNo1Qprn371/nqDQcEeYcIaYZJHU6JZanD4iY+Pp6SkJBC1CCFEg/k1nWKHG5en9oHNx+4m3j4pqtE/0MOp2+PZv5/D81/Es2c3ALbBZ9LqmvEYrLYTfu3RCxQaJPSIZqzB4eeKK67gH//4B2vWrCE9PZ3WrWvuyHvppZc2Rm1CCHFcJxrYXLmbeF5BGX5Nw6CqJMVbGTU4lczUVqd8/bq6PVaLkctDMZPrl584/NIL6F4vqs1G/ITrsfU/8X6MtS1QKERz1uDw8+9//xuADz74oNbziqJI+BFCBNyJdmPPyilk8RdZuNw+bJEmjAYjPr9O7iEHi7/I4trzMk8pAB2v23PtqG7ERllO+r1PlqVjJxSTCUtGJq0nTsIYG3fc16uKQmSEEVtExfo7QrQUDQ4/sv6NECLUTjS+R9N0Pv8xB5fbR6zdXNV9MRsVTDYzRU4Pn/+YQ0aHuAY/Ajtet+eKkRkMCnK3x71rJ5bOFfspGlu1os3UaRgTk45bQ30WKBSiOWtw+PnnP//JX/7yF84888xA1COEEHU60fieSnvzSskrKMMWaaoRAhRFwWYxkVdQxt68Ujq2ia739QuLXbz22Va25oS+2+N3OChYvIiydWtIvOterL37AmBKSq7za05mgUIhmqMG//SvW7eOiRMnBqIWIYSok8frp9hRv4ULHWVe/JqG0VD7X3FGo0KZW8NR5q3XtcOt21P+62YOL5iHv6gIVBVffv5xX38qCxQK0Rw1+E/BkCFDWLJkCX379sViCf4zbSFEy+Mo9/weaOo3j91uNWFQVXx+HbOxZijx+XQMasXCfSdSd7enNdeOygxqt0dzuzny7hJKV3wJgDEpmYTJN2Pp1LnW1yuAyahiizQRKWv1CFGlweHHYrHw2Wef8eWXX9KuXTvi4+OrnVcUhYULFzZagUKIlutk9+dqnxRFUryV3EMOTDZzjX0InW4vKQl22idF1fkex+32nJPBoB5BHtuT8xuH58/Fe/AAAFFnjyBu3JWotfwjVKFirR5bpAlbRM1Hf0K0dA0OPwcPHqRfvz8Wyzp2X9QG7pMqhBC18vs1ikrduLz+E7/4GKqqMGpwKou/yKLI6cFmMWE0Kvh8FcEn0mxk1ODUOgc7h1O3p5KvoADvwQMYYmJpPXEykT171fo6WatHiBNrcPhpyju2CyGahoaM76lLZmorrj0vs2qdnzJ3xTo/KQn2Otf5Cbduj+7zoRgr/pq2nd4f//jrsPUfiMFur/Fag6oQKWv1CFEvJz3ybefOnaxdu5bS0lLi4uI4/fTT6dy59ufOQghRX26PjyOl7nqP7zmezNRWZHSIq9cKzwXF5bz2WRZZx3R7enep6PbE2IPX7dF1ndJvv6b4s09o8/DfMcbEAhA9bHiN16qKgjXC+PtaRhJ6hKiPBocfXdeZNm0aS5YsqfaIS1EUxowZw4wZM+T5shDipJS5KhYubMyNSVVVOe509nDr9viKiih49WXKN28CoPTrFcRdelmN18kChUKcvAaHn/nz5/Puu+9y1113cfHFF5OQkEB+fj4ffPABL7zwAunp6TIVXgjRYI4yD6Vlwd2Y9HjdnmvOC/7YHudP6yh47VU0hwOMJuLGXk70iHOqvUYWKBTi1DU4/CxdupTJkydz6623Vh1r164dt99+O16vlyVLlkj4EULUm1/TKTmJGV2nIty6PVpZGQVvvo5z9Q8AmDt0pPWkmzCntKt6jSxQKETjafCfoAMHDjB48OBazw0aNIhXXnnllIsSQrQMbo+PEqfnlAY2N1Q4je2pVPzZxxXBR1GIOf8iYi++tGqgsyxQKETja/CfpJSUFLKysjjjjDNqnNuyZQutWp36TslCiOZN13UcZV4c5d5GHd9zomt+vyGXd7/egfvobk+EkSvP6crA7sffDyuQYi68GPee3cRedAkR6RlARegxGSoWYoy0nHgxRiFE/TU4/Fx00UXMmjWLxMREzj//fFRVRdM0Pv30U+bMmcNVV10ViDqFEM2E1+en2OHB4/UTrOE9Den2aJper9lhp8Kzdw+l331Dq6vHo6gqakQEyff+FahYoNBoULFZTVhlVWYhAqLB4efGG29k/fr13H///UyZMoXY2FiKiorw+/0MHDiQu+++OxB1CiGaOF3XcZZXdHsaYxp7fa/ZkG5PVk5h1bpAfq1iXaCkeGud6wI1uB5No+SLzziy7F3w+zG1TSH67BFV5w0GBXuECWuEqdEDlxDiDw0OP2azmQULFvDtt9+ydu1aSkpKiImJYcCAAQwdOjQQNQohmjivT6PE6cbt9QdtUPPhonJe/2wrWbuPVDte19ierJxCFn+Rhcvt+33NHCM+v07uIQeLv8ji2vMyTykAeQ8d4vArL+HO3g5AZN/TsJ0+AKhYoNBqMWGzyqrMQgTDSY+eGzp0qIQdIcQJOcs9lDZgU9JTdTJjezRN5/Mfc3C5fcTa/9gLzGxUMNnMFDk9fP5jDhkd4hrckdF1HccP31P45mJ0twvFEkGrq6/FPuQsDKpKhMWAPdIsa/UIEUQNDj+apvHmm2+yZs0aSkpK0LTqszRkY1MhBIRXt6dPesW6PXXN5NqbV0peQRm2yJqbgCqKgs1iIq+gjL15pcddMLE2R955i5IvPwfAkp5B6xtuwpyYgMVowG4zY5G1eoQIugaHn2eeeYZ58+bRpk0bUlJSavxFIRubCtGy6bqO0+XFEebdnqNV1KphNNT+V6LRqFDm1nCUeRtcm23QYEq/XUHs6EuJPu98zCYjdmvFuB4hRGg0OPy8//77XHvttfz9738PRD1CiCbM6/NT4vDg9gW32/PaZ1vZ1sBuz9HsVhMGVcXn1zEba4Ykn0/HoFZMOz8RzVWOe8eOql3XLamdaPfEM5iiorBGGImymmUwsxAh1uDw43A4OPfccwNRixCiiQpFt0fTdb7/JZf3vt6B23tq6/a0T4oiKd5K7iEHJpu52tfpuo7T7SUlwU77pKjjvo8rezuHX3kJ35EjtJ06DXP7DigK2OJiiLKZZTsKIcJEg8PP6aefzoYNGxg0aFAg6hFCNDE+v0axI/hje06123M0VVUYNTiVxV9kUeT0YLOYMBoVfL6K4BNpNjJqcGqdHRvd56Pow/cp/uwT0HUMreLRPB4MqoLdasIWUXMskRAidOoVftatW1f13+eccw7//ve/KSsr47TTTsNqtdZ4/YABAxqvQiFE2Cp3eyl2evD7Q9vtsf3e7RlwCqs0Z6a24trzMqvW+SlzV6zzk5JgP+46P57cfRyePxfP3j0VtZwxhIRrxhMZG020zYzRILO4hAg39Qo/EyZMqNEGnjt3LkCN44qisHXr1kYuUwgRTnRdp8TpoczlDdou7I3d7alNZmorMjrE1XuF55IVX1H4zlvg86La7bSecD2tBg/GbpXNR4UIZ/X607lo0aJA1yGEaCL8fo0ihxu3JzjbU1R1e76pPpOrMbo9tVFVpd7T2XWPB3xeInv1pu3kG4lpkyD7cAnRBNQr/AwcODDQdQghmgCP10+xwx20XdgPF5Xz2qdb2bbn2G5PAtec1zXoO7Druo7mdGKw2wGIPe98rG2TSf7TGURI6BGiyZC+rBCiXoK5UnMgx/acLL/DQcHrr+LZt4920/6BLdqGLcKIacSfg1qHEOLUSfgRQhyXX9Mpcbopd/uCMpsr3Lo9AOWb/8fhBfPxFxeBqmLJ/Y3YtqcHvQ4hROOQ8COEqJPb46PY4cHrD/xjLk3X+e6XXN6vpdtz1bld6d8t+N0eze3myNK3Kf16OQARKW3JuPduotK7BLUOIUTjkvAjhKhB13UcZV4c5V60ILR76ur29M2o6PZE24Lf7XHv2snhl1/Cm3cQgDYXXkDH68ZjsAS/FiFE45LwI4SoxuvTKKlctDDA1wrHbg+AqiiUfvIB3ryDmFu1Iv3uO4jt2yfodQghAqPBq2/Nnj2bvLy8Ws/l5eUxe/bsUy5KCBEaznIPBcXluIIQfA4XlfPcm7/w1n+3VQs+fTMSmHbjYAZ0Tw568FEUiDAbiI+JIPPu20kcOYK+M5+W4CNEM9Oo4efgwYMSfoRognx+jYJiV8VqzQGezaXpOt/8vI9/vrym2mMuW4SRSRf34OYxvYL/mEvXKft2BY533yI+JhKzyYAlPp70O2/DFHX8/byEEE1Pgx97LV++nISEhFrPdevWjeXLl59yUcfyer3Mnj2bDz74gOLiYrp168b//d//cdpppwGwdetWZsyYwebNm4mNjWXChAlMmjSp0esQojkK5hYV4Ti2h5IiCha+TOnGTQAknzWE6O7dgl+HECJoGhx+UlJS6jxnNpuPe/5kvfDCC7z77rv8+9//pn379sybN48bb7yRTz/9FLPZzMSJExk5ciTTp09nw4YNTJ8+ndjYWMaOHdvotQjRXGiaTmlZcLao0HSd737ex/vf7Kw+tifSxNXnduX0zMSgP+JSVQXfhp/Y/8rL+BwOVLOZjn8ZT1Rm16DWIYQIvpMe8Pztt9+yatUq8vPzue+++9i6dSs9evQISPhZvnw5F110EX/6058AePDBB1myZAkbNmwgJycHs9nMo48+itFoJC0tjd27dzNv3jwJP0LUweP1U+L0VAsigXKoqJzXPt3C9j1F1Y73y0jg6hB0exTA4HFx5K3XKfjuewBsaZ3JuPdurO3bBbUWIURoNDj8lJeXc/vtt7Nq1SrsdjtOp5PJkyfz5ptvsmXLFl5//XXS09MbtcjY2Fi+/vprxo8fT5s2bXj77bcxm81069aNpUuXMmDAAIzGP76VwYMHM3fuXAoKCoiPj2/UWoRo6hzlHhxBWKk5LLs9ioItwsiux6bj3LULVJV24y6j/RXjUE2yPYUQLUWDBzw//fTT/Prrr7z66qv8+OOP6L+vAfLEE0+QlJTEc8891+hFTp06FaPRyIgRI+jVqxfPPPMMzz77LB06dODgwYMkJydXe31iYiIA+/fvb/RahGiq/L8Pai4JwqDmQ0XlPPvmz7z15fZqwadfRgLTJg8K+hR2BbCYDLSKiSDabqH9FeOISE6m1+P/ouO1V0vwEaKFaXDn57PPPuO+++5j8ODB+P1//KWWkJDArbfeyj/+8Y9GLRBg586dREdHM2fOHJKSkliyZAlTpkzh9ddfx+VyYTabq73e8vsiZG63u9FrEaIpCtag5nDt9hjy9qG6y7Cc1g+A+DMGEdf/NAk9QrRQDQ4/JSUldY7riYmJoays7JSLOlpubi5//etfefXVV+nfvz8AvXr1YseOHcyaNYuIiAg8Hk+1r6kMPVartVFrEaKpCea+XGE3tkcBs0HF+eWn5L69BENkBP1mPou5VRyABB8hWrAGh5/09HQ++uijqsHHR1uxYkWjj/fZtGkTXq+XXr16VTvep08fvvvuO9q2bUt+fn61c5W/TkpKatRahGhKyt1eSp3egO/Lpek63/68j/e/2YHH+8e1QtXtURQwGVRMpYXsef4FSrdmARDdvTuKocFP+oUQzVCDw8+tt97KHXfcQVFREWeffTaKorBu3Tree+893nrrLZ566qlGLbBNmzYAbNu2jd69e1cd3759Ox07dqRv37689dZb+P1+DAYDAKtXr6ZTp04y2Fm0SD6/RonTg8sTnG7Pok+2kL23qNrxUHR7KkNPpMWAY+X37Hh5AZrLhSEykk433kDi8LNDslWGECL8KLre8L8eP/roI5566ikOHjxYdSw+Pp577rmHyy+/vFEL1DSNCRMmUFhYyLRp00hOTmbZsmW89NJLvPHGG7Rv357zzz+f4cOHM3nyZDZt2sSjjz7K9OnTGTNmTIOvN2LECICALNYoRKA5XV5Ky4Iztqe2bo890sRVIej2mAwqtkgjkSaVbU88SeGadQBEd+9G+j13EZGUGLRahBCh0ZDP75Na52f06NGMHj2aXbt2UVRURHR0NJ07d0ZVG7+lrKoqzz//PM8++ywPPfQQxcXFZGRk8Oqrr9K3b18A5s+fz4wZMxgzZgwJCQk88MADJxV8hGiqvD7t93V7Qtjt6ZrA1edmEm0z1/6FAVAxdd2EzWrCoFaELXNcHIrRSIdrryblktEov3eEhRCiUoM7P3/5y1+YNm0aaWlpNc5lZWXx17/+lY8++qjRCgw26fyIpkTXdZwub9DW7amr23P1eV05PTN4Y+xUBcwmI9E2E4rHg+ZxY46NBcDvcuE6mIcttWPQ6hFChF6jd37Wr19ftZ7P2rVrWbduHYWFhTVe9/XXX7N3796G1CqEOElen58Shwe3zx+ybs9pXRO56tyuQev2KAqYjQairCYsZiMlW7ay/dmZRCQl0WP6IyiqiiEiQoKPEOK46hV+li5dyrJly1AUBUVRmD59eo3XVIajiy66qHErFEJUo+s6jjIvTleQuj0/7eP9b2sf29O/W/C6PQaDQpTVjC3ChOb1krPodXLfWwa6DrqOp6AASx2bLgshxNHqFX6mTp3KZZddhq7rXHfddTzyyCN06dKl2mtUVSU6OrrRp7oLIf7g9vopdXrweP0Eeg/2Q0fKWPTp1rDo9kSYjUTbzBgNKs7de8h+5jmcv+UAkDj8bDrdeANGWddLCFFP9Qo/UVFRDBw4EIBFixbRo0cPbDZbQAsTQvxB0/7o9mgBfsal6Trf/FQxtsfrC123RwGMBhW71YQ1woSuaeR+8CG7Fy1G9/kwRkXR5fZbiD9jcFDqEUI0Hw2e7TVw4EAOHjzIt99+W21lZU3TKC8vZ/369TzzzDONWqQQLZnb46PE6cHr0wLe7ck/UsaiT7ayY19RteOnZSZy9bldibIGp9tjUH+fxRVpQv19Fpfu85H33+XoPh9xp59GlztvwxwXF5R6hBDNy0nt7fXXv/4Vn89XtY6HrutV/925c+fGrVCIFsqv6TjKPJS5vAR4aE9Vt2dZLWN7gjmTS1HAYjISY694xKXrOrqmoagqqtlMxn1348jeQdJ558iChUKIk9bg8DN37ly6d+/Oo48+yuLFi/H5fNx00018++23PPPMMzz88MOBqFOIFiVYW1NAeHV7oqwmbJEV1/OWlLLzhbnYu6TRbmzFul32tM7Y0+QfWEKIU9Pg8PPbb7/x5JNP0r17d8444wzmz59PWloaaWlpFBQU8OKLLzJkyJBA1CpEs+f3a5SUeXC5fSHr9kRZK1dpDma3x0C0zYLJWLFQ6pGffyF75hy8R45w5KefSTpnBKbo6KDUI4Ro/hocflRVJfb3xcRSU1PZtWsXmqahqipnnXUW7733XmPXKESzp+s6znIvjvLAT1+Hurs9p2dWzOQKZrfHbjVhizChKAp+l4ucVxdx8LMvAIhsl0LGvXdL8BFCNKoGh5/OnTvz008/MWDAAFJTU/F6vWzdupUePXpQUlJSbRC0EOLEyt0VKzQHY0Czput8vX4vy77dWWMmV9DH9hgNRNvNmIwV20+UbtvO9mdn4tp/AIA2F11Ax7+Mx2AJ3uaoQoiWocHh56qrrmLatGmUlZVx3333MWjQIB5++GHGjRvH66+/To8ePQJRpxDNjtvrx1Hmwe0N/ArNEGbdnsiKmVyVg5a9JaVsfmQ6msuFOb4V6XfdQWzfPkGpRwjR8jQ4/Fx++eV4PB727dsHwD//+U9uvPFGZsyYQUpKClOnTm30IoVoTvx+jdJyL+VBmMUFdXd7QjK255huTyVTdBQdrrkSx46dpN18I0a7PSg1CSFapgaHn1WrVjFmzBisv6+m2r59ez777DOOHDlCq1atGr1AIZqTik1IPfj8QUg9hG+3R9d1Dn76Ofb0LkRlVKwK3/bi0WE7fV3TdHblFlPi9BBtM9M5JaZq/SEhRNPT4PDzwAMPMGXKFEaPHl11TFEUCT5CHIfH66e0zIvb6wvKI66w6fbw+0yuo7o97oJCdsyaQ9EvG4ho24a+zz6FwWIJ2+CzMfsQS1dkk5vvwOfXMBpUUhLtjBueTp902UtMiKaoweHHbDZjkQGIQtSL36/hKPdS5vIFfFuKShXdni3s2Fdc7Xiwuz2qUtHtsVv/GNtzeOUP7HzhJXwOB6rZTJsLL0A1mYJSz8nYmH2IOUs3Uu7yEWUzYTKY8Po1cg6UMGfpRm4f10cCkBBNUIPDz80338wjjzxCVlYW6enptG7dusZrBgwY0CjFCdFU6bpOmctLabkXf5AecR2v23P1uZmclpkYlDoAzEaVaLsFi6mi2+NzONn10nwOffsdALa0NDLuuwtru3ZBq6mhNE1n6Ypsyl0+4mP+6ExZVAPmaJWCEjdLV2TTK621PAIToolpcPiZNm0aAM8//zxAtVZ15TYXW7dubaTyhGh63F4/DqcHty84s7gA8grLeO3Tmt2e/t0SufKcYHZ7wBphIspqrgoE7kOH2TTlYTwFBaCqtBt3Ge2vvBzV2OC/foJqV24xufkOomymGo/kFEUhKtJEbr6DXbnFdGkfG5oihRAnpcF/+yxatCgQdQjR5AVz5/Wqa4Zbt8dmxmKu/teKuXU81g7tUc0mMu69m6iuGUGr6VSUOD34/BomQ+2P5UxGFUe5lxKnrG0mRFNzUru6CyGqC+bO65Xq7vYkcdU5GdiD1O1Rjur2GH7v9jh2/UZEcjJGaySKopBx712oFguGiIig1NQYom0Vm6t6/RoW1VDjvNdXMfg52hac+yyEaDzh3XcWIsyFYkDz8bo915yXSb+uwev2GFSFKJsZW0RFd0T3+8l9/wP2vPk2CcOGkn7nbQCYYmKCVlNj6ZwSQ0qinZwDJZij1RqP+EvLvaS2iaZzStP73oRo6ST8CHESKkNPudsXlL24Kh1vbM9V53QNWrcHag5qLj9wkOxnZ1KatQ0Av9OB5vOF/dieuqiqwrjh6cxZupGCEjdRkSZMRhWvr2KRSqvFyLjh6TLYWYgmqGn+rSROmizWdmqCvQFpJU3TWbF+Lx98F/puj6JApMVItM2CQa1YsDDvy6/47eVX0VwuDJGRdL5pMglnDw3btXvqq096AreP61O1zo+j3IvRoJLaJlrW+RGiCZPw04LIYm2nxuP1UxrkWVxQ0e1Z9OkWdoZ4bA/8sQu7PbLimp6iYnbMnsORdT8BEN2zB+l330FEYvDCWKD1SU+gV1pr+UeDEM2I2tAveOihh9i7d2+t53bt2sUtt9xyykWJxle5WFvO/hIiLAbioixEWAxVi7VtzD4U6hLDll/TKXa4KSh24QrSJqRQ0e35au0e/vXKmmrBJ8pq4uYxvZh8Sc+gDmq2mAzERUdUBZ9Kju3ZKEYjqROvo+c/H21WwaeSqip0aR/LaZmJdGkfK8FHiCauXp2f/fv3V/33smXLGDlyJAZDzdkP3333HatWrWq86kSjkMXaTl6Zy4ujzIvXr534xY0oHLs9toiK9W78bjeG31d5N8fGkHH/vZhiYrCldgxaTUIIcSrqFX7+8Y9/8O2331b9+o477qj1dbquM2TIkMapTDSaprxYW6jGKLk9PhzlXtxB7PRAeI7tibJWTPkGKP51C9nPziL1uvG0/lPFn/XYPr2DVpMQQjSGeoWf6dOns2rVKnRd5+GHH+bWW2+lQ4cO1V6jqirR0dEMGjQoIIWKk9dUF2sLxRglj9dfEXo8PoI4nhmo6PYs/GQLu3LDoNtjUIi2mrH+PoVd83rZ88Zb5L7/Aeg6+977gPghZzb5Ac1CiJapXuEnKSmJMWPGABWdgsGDB9OmTZuAFiYaT1NcrC3YG0r6KqeuB3G9nkrh1u2JMBuJsZkx/N7tcebsZvszz1GWsxuAxJHD6TRpogQfIUST1eDZXv/+97+ZMWOGhJ8mpKkt1hbMMUp+TaesvGJLimBOXa9UV7dnQPckrjynK/bI4O14XmPBQk1j/4cfs/u1xeg+H8boaLrcfgvxg6W7K4Ro2hocfuLj4ykpKQlELSJAmtpibcEYo6TrOk6XF2e5F1+Qdl0/Wl3dnmibmavP7Rr0bo/FZCDaZsFk/GMCaOm27eQsWAhA3IDT6XLHbZhjY4NWlxBCBEqDw88VV1zBP/7xD9asWUN6ejqtW7eu8ZpLL720MWoTjagpLdYW6DFKZb+HnmDuw3W0cOv2HL1uz9Giu2WSctmlRLRpQ9I5I+QxlxCi2Tipx14AH3zwQa3nFUWR8BOmmspibSc7RulEM8NcHh+OMi+eIC9SeHR9dXV7rjkvk74ZwQugCr93e+xmTMaKe+wtKeG3VxbS8dqrsCRU1JJ63YSg1SSEEMHS4PCzfPnyQNQhgqRysbZwdjJjlOqaGXblyAwyOsRRWubF7fWFJPQAHCxwsujTrWHR7VEVsEWYqz1WPPLTz2TPmoP3SBHeI0foMf2RoNUjhBDB1uDwk5KSctzzeqg+XUSz0dAxSrXNDDMYFBzlHhZ/nsX5Z6aS1i42JN+LpuksX7eHD7/fFfKxPQBGg0K0zUykpSJs+V0uchYs5ODn/wUgsn07Ov5lfFBrEkKIYDupvb0++eQT1q5di9frrQo7uq5TVlbGhg0b+O677xq1SNHy1HeM0rEzw8wmA7YII4qqUO72su9QKR+t3MVdV/QL+uO9cOr2VD7miomyVC1YWLptO9ufeQ7XgYMAtBl9ER0nXFO1erMQQjRXDQ4/s2fPZvbs2URFReHz+TCZTBiNRgoLC1FVlcsvvzwQdYoWqD5jlCpnhsVGmYmxmzEaVdweP47SigHNEUYjeQVl7M0rpWOb6KDUfbxuT7DH9kAdj7l+/oUt/3wMNA1zfDzpd98hKzULIVqMBoef999/n4svvpj/9//+HzNnzmT//v38v//3/9i8eTM33XQT6enpgahTtFAnGqNU4vQQaTGQEBOJX9c5UuLG7fFXnTcaFcrcGo4ybxCqrbvbM7BHMleMzAhqtwcqVmqOOeoxV6WYnj2wtkvB1qkTnW+ajNFuC2pdQggRSg0OP3l5eVxyySUoikKPHj345JNPAOjZsye33HILS5YsYfx4GTMggiPGVrEFQ0GpC5+v5uajPp+OQVWxWwMbOsKt26MAFrOBGHvFYy5d0zi8chWth5yBYjCgms30+vcMjDYJPUKIlqfB4cdqtVa1zlNTU9m3bx8ul4uIiAi6devGvn37Gr1IIY7l13QcZR4iIoyoKhwqKifWZq4xM8zp9pKSYKd9UlTAagm3bo+qKNgjTditFY+53AUF7Jg5h6ING3Hn59Nu3GUAEnyEEC2WeuKXVNerVy/ef/99ADp06IDBYGDVqlUA7Ny5E7M5fPaHEs1TmcvL4aJyHOUVj7LOHZRKhNlIkdODx6uh6Toer0aR00Ok2ciowakBGeysaTr/XbObGQvWVgs+0TYzt1zWmxtG9wh68DEaFOKiLUT9HgQPff8Dv9x5L0UbNqKazRgk8AghRMM7P7fccgsTJ06ktLSUF198kYsvvpgHH3yQQYMGsXLlSkaOHNmoBa5Zs4a//OUvtZ5r164dy5cvZ+vWrcyYMYPNmzcTGxvLhAkTmDRpUqPWIULP69MocXpqrNeTmdqKa8/L5PMfc8grKKPMrWFQVVIS7IwanEpmaqtGr+VggZOFn2zht/3Vt3oZ2COZK0dmYAty6IHfZ3PZK7ao8Dkc7Jw7j8PfrQTAnt6F9Hvuwtru+EtVCCFES9Dg8DNgwACWLl3Ktm3bAHjkkUdQVZWff/6ZUaNG8eCDDzZqgf369WPlypXVjm3fvp2bbrqJW265hSNHjjBx4kRGjhzJ9OnT2bBhA9OnTyc2NpaxY8c2ai0iNDRNx3mCzUczU1uR0SGOvXmlOMq82K0m2idFNXrHR9N0vlq3hw+/24XPH/qxPVCxN1ekxUiMzYKqKpRszWLbf57CU1AIqkr7K8bR7vKxqMaTWtlCCCGanZP62zAzM5PMzEwALBYL//znPxu1qKOZzWYSEv74QPF6vTz++OOce+65XH755cydOxez2cyjjz6K0WgkLS2N3bt3M2/ePAk/zUBD9uFSVSWg09nDsdujKmCPNBN11FYfRpsVb0kpEW3bkHHv3URlyAxMIYQ42kmFH4/Hw9KlS1m1ahWHDh3iscceY+3atfTo0YPevQO7VsjixYs5cOAAr7zyCgDr169nwIABGI/6V+3gwYOZO3cuBQUFxMfHB7QeERju3/fhcodoH66jhWO3Byo2JY2xV0xj9xQVY46t2O7D2qED3R+ZSlRGOoaIiJDUJoQQ4azBA54LCwsZO3YsM2bMYPfu3WzatAmXy8U333zDhAkT+OWXXwJRJwBut5sXX3yR6667jsTEim0BDh48SHJycrXXVZ7bv39/wGoRgeH1+SkscVFY4sLlDX3wOVjg5D+vr+e9r3dUCz4DeyQzbfLgkAUfs1GlVXQEEUaVve8s5acbb6F02/aq87G9e0nwEUKIOjS48/PEE0/gdDr59NNPSUlJoWfPngDMnDmTSZMmMXPmTBYsWNDohULFTvJut5sJE/7YadrlctWYYWb5fXl+t9sdkDpE4/P6/DhdPspdPrRQJx6O3+25dlRm1fYawVa5fk+s3YInP4+sZ2ZWhZ7Dq1YT1TUjJHUJIURT0uDw8/XXX/Pwww/TsWNH/P4/VtK1WCzccMMNjT7g+WjLli3j3HPPJS4urupYREQEHo+n2usqQ4/Vag1YLaJxeLx+nC4vLrc/LEIP1D22Z9Dv6/aEYmwPVIzvsUaYiLKayP/vV/z2yqtobjcGq5XON08mYeifQ1KXEEI0NQ0OP263m9jY2FrPGQwGvN7AbCNQWFjIL7/8ws0331zteHJyMvn5+dWOVf46KSkpILWIU+f2+HC6fLg9PuqYwBV04drtATAaVKJtJgxlDrL+9TxHfvoZgJhePUm/+w4sCaGrTQghmpoGh59evXrxxhtvMHTo0BrnPvroo6rHYI3t559/RlEUBg4cWO34gAEDeOutt/D7/RgMBgBWr15Np06dZLBzGHJ7/TjKvHi84RN64OS6PZqmB3xqvapAZISJKKsZg6pw8Jt1HPnpZxSTiY4TrqXt6AtR1AYP3RNCiBatweHn7rvv5vrrr+eSSy5h6NChKIrCxx9/zKxZs1i5ciXz588PRJ1kZWXRvn17IiMjqx0fO3Ys8+fPZ+rUqUyePJlNmzaxcOFCpk+fHpA6mjJN04+7Q3ogeX1+HOVeXO7wCj3H6/aMH5VJ7zq6PVk5hVWLKvq1ikUVk+KtjbaooqKA2WggymrCYv7jj2nSuedQvi+XxJEjsHXscMrXEUKIlkjR9YYPtFi3bh1PPfUUmzZtQtM0FEWhe/fu3HfffQwZMiQQdfLoo4+ydetW3n777RrnNm3axIwZM9iyZQsJCQnccMMNJ7256ogRIwBYvnz5KdUbbjZmH2Lpimxy8x34/BpGg0pKop1xw9MD+jincg+usjAZyHy0kx3bk5VTyOIvsnC5fdgiTRgNCj6/jtPlJcJs5NrzMk86ACmAyahiizRhjTBRvPlX9rz5Nt2mPohRxrAJIUSdGvL5fVLhp5LL5aK4uBi73Y6tmewZ1BzDz8bsQ8xZupFyl48omwmTQcXr1ygt8xJpMXL7uD6NHoB0XafM5cVR7sXnD6/QcypjezRNZ+Y7v5Cb7yDWXnMj1SKnh5QEO3dd0a/BXbWjNyTVfT72LH6T3GUfgq6TctmlpF434cRvIoQQLVRDPr9Per17p9NJaWkpmqZRXFxMcfEfGzu2bdv2ZN9WNDJN01m6Iptyl4/4GEvVh7VFNWCOVikocbN0RTa90lo32iOwcrcXR5kXr18L+To9xzpw2MmiT09+JtfevFLyCsqwRZqqBR8ARVGwWUzkFZSxN6+0QatNmwwqMXYzFrMRZ04O259+jrLdewBIHDmCdpePq/d7CSGEOL4Gh589e/Zw33338euvv9b5mq1bt55SUaLx7MotJjffQZSt9g/rqEgTufkOduUW06V97CldK5xWZT6Wpul8uXYPH31fvdsTYzdz7Xl1j+05lqPMi1/TMBpq/6NjNCqUuTUcZfWb9agoEGE2EmMzo6Kz771l7Fn8JrrPhykmmrTbbyN+0IB6vZcQQoj6aXD4mT59Onv27OHmm2+mffv2qDLTJKyVOD34/BomQ+0dDZNRxVHupcTpqfV8ffj9GiVlnrAbzFyprm7P4J7JXD4yA1tE/dftsVtNGFQVn1/HbKzZKfP5dAyqit164vc0qApRNnPV9XcvfpN97ywFoNXAAaTdfmvVlhVCCCEaT4PDz88//8y0adO49NJLA1COaGzRNjPG38f4WFRDjfNen/b7GjLmWr76xJzlHkrLvfjDbFwPgF/T+GrtHj76/rdT6vYcrX1SFEnxVnIPOTDZao75cbq9pCTYaZ8UVed7KApYjAai7RZMxj/+8dDmwgs4/N1K2l1+GYkjhtfo1AkhhGgcDQ4/Nput2i7rIrx1TokhJdFOzoESzNFqjQ/r0nIvqW2i6ZzSsA6Dx+un1OkJy0dcAPsPO1j0yVZyDpx6t+doqqowanAqi7/IosjpwWYxYTQq+HwVwSfSbGTU4NQ6x08ZDBWPGq0RJnwlJez/biVtR18IgDk2htOen4liqBlShRBCNJ4Gh59LLrmERYsWMXjw4KpFBUX4UlWFccPTmbN0IwUlbqIiTZiMKl6fRmm5F6vFyLjh6fUe7BzOU9fh6G7PrmqzzE6l23OszNRWXHteZtU6P2XuinV+UhLsda7zoygQaTESZa3oxBWuW8+O2S/gLSrCFBtLwlkVS0RI8BFCiMCrV/h56KGHqv7b5/Px/fffc84559C7d+8aiw4qisJjjz3WuFWKU9InPYHbx/WpWufHUe7FaFBJbRPdoHV+ylx/zOIKR4Hq9tQmM7UVGR3i6rXCs0FViLKasEWa8ZeXs2PBQvK++BIAa4f2RKbI7EghhAimeoWfNWvWVPt1cnIyULG44LFknEJ46pOeQK+01ie1wrPb68cRxo+4jtvtGdWN3l1aB+S6qqqccDq72agSbbdgMRko2ZpF9rOzcB08CIpC24svouP4a1DNJzfeSgghxMmpV/hZsWJFoOsQQaCqSoOms/v9FY/GysP0ERccr9vThstHpjdqt6chqqaw2y0YVIXcDz4k59XXQNMwt25N+t13ENu7V0hqE0KIlu6kFzkUzZffr1Hm8uF0efGH49x1QtftqQ9VAXukGbv1j7WVrB06gKaRMGwonW+chNHePFZEF0KIpkjCj6ji9WmUubyUu31hG3oguGN7GsqgKsTYzUSYDJTvy8Xavh0Acf360ueZJ7F37hSy2oQQQlSQ8CPw+zUc5d6wncFVya9pfLlmDx+vPLbbY+HaUZkh7fZAxfie2CgLWlERvz43C0f2Dvo+9zQRSYkAEnyEECJMSPhpwfyaTlm5N6wfb1Xaf9jBwk+2sjvMxvZAxU7sFrOB2KgICleuZOeL8/A7nahmM86cnKrwI4QQIjxI+GmBNO33HdddXjS/TjjHnnDv9igK2CJMRGpudjz1AodX/gCAPT2djHvvkmnsQggRhiT8tCB+Tafc9XunJ8xDD8D+Qw4Wflqz23NGrzaMGxHabg9UDGyOsprxbtvCxplz8BQWgqrS/srLaX/5WFmwUAghwpSEnxag6vGWO/w7PXD8bs/4UZn0CnG3B/4Y2BxpMfHbho14CguJTGlL+r13E5XeJdTlCSGEOA4JPy2A2+OjtNwTlgsUHivcuz0KYDKqREUYibBU1NLx2qsx2my0vWQ0BoslpPUJIYQ4MQk/LUWYB5+m0O1RFQWrSaXo0484+L//0fOfj6IYDKhmM+2vGBfq8oQQQtSThB8Rcsfr9lw+Ih1riLs9UDGN3VxSQM7sOTi2ZwNQsGYtrc88I8SVCSGEaCgJPyJk/JrGf3/cwyc/1NLtOT+TXmmh7/YogNlkwL3qW3a8ugjN7cZgs5J2803EnzE41OUJIYQ4CRJ+REjkHnKw8JMt7DlYWu14OHV7FAXM5Q7ynp9P0c+/ABDTuxfpd92BJSH0wUwIIcTJkfAjgqqubk9sVMW6PeHQ7QEwGBSirWZ+m/U0RRs2ophMpF43njYXXoCiqqEuTwghxCmQ8COCJveQg0WfbGH3Md2eM3+fyRUu3R6LyUiM3YzRoNJp0kR2zHmBLrffirVD+1CXJ4QQohFI+BEBd7xuz/hRmfQMk26PqigoOdm4D+zDOPoiAKwd2tPr3zOqdmcXQgjR9En4EQFV19ieM3u3Ydzw8Oj2AKiaF+dHy8j7+BNQFKK6diUqIx1Ago8QQjQzEn5EQPg1jS9+3M0nK3+rtmlquHV7APT9+zgw/0XK9+wFIOmcEVjbtwtxVUIIIQJFwo9odLn5DhZ+Gv7dHnSNsq++4NC7S9F9PkwxMXS58zZaDegf6sqEEEIEkIQf0Wj8fo0v1jSNbo+CzqFZz+LYtBGAVoMG0uX2WzDFxIS4MiGEEIEm4Uc0itz838f25NXs9lw+PIPIiPD5UVNVhWibBXXIYMqzt9PpxhtIHH62jO0RQogWInw+kUSTVFe3Jy7Kwvjzu9Gjc3wIq6vOX1KCUlpM6x4ZWEwGrOedQ9yA/ljiW4W6NCGEEEEk4UectJPt9miazt68UhxlXuxWE+2TolDVwHZdyjb+TMHCBRgsFtrMfBpMVhRFkeAjhBAtkIQf0WDH6/Zce4KxPVk5hXz+Yw55BWX4NQ2DqpIUb2XU4FQyUxs/iGiuco688yal330LgKVjB7zFJRit1ka/lhBCiKZBwo9okLq6PUN6t2Xc8PTjju3Jyilk8RdZuNw+bJEmjAYjPr9O7iEHi7/I4trzMhs1ALmyt1Pwykt4Dx0CRaHtJaPpeO3VqGZzo11DCCFE0yPhR9TLqY7t0TSdz3/MweX2EWs3Vw0uNhsVTDYzRU4Pn/+YQ0aHuFN+BKZrGkXL3qX4s09A17EktCb9nruI6dnjlN5XCCFE8yDhR5zQvvxSFn2ytWa3p09bxp19/G5Ppb15peQVlGGLNNWYVaUoCjaLibyCMvbmldKxTfQp1WswqHAoD3SdxOHD6DT5Bow22ym9pxBCiOZDwo+ok9+v8fmPu/n0h1OfyeUo8+LXNIyG2n/kjEaFMreGo8x7UrXqmobu9RJhiyTGbqH1nbdSsvVs4gcPOqn3E0II0XxJ+BG1aoxuz9HsVhMGVcXn1zEbaz7W8vl0DKqK3drw1Z99BQUcXjAfU2wMPabcj0FVICZGgo8QQohaSfgR1TRmt+do7ZOiSIq3knvIgclmrvboS9d1nG4vKQl22idF1fs9dV3H+eMqCt94Ha28DI/Fgjc/D0Ny8knVKIQQomWQ8COqNHa352iqqjBqcCqLv8iiyOnBZjFhNCr4fBXBJ9JsZNTg1HoPdvY7HBS8/ipl69cBENU1g/R77iRCgo8QQogTkPAjAtbtOVZmaiuuPS+zap2fMnfFOj8pCfYGrfNTtnkTBQtexl9chGIw0P6qK2g3dgyKwdAodQohhGjemkz4WbZsGS+99BJ79+6lQ4cO3HHHHZx//vkAbN26lRkzZrB582ZiY2OZMGECkyZNCnHFTcO+/FIWfrKVvQHo9tQmM7UVGR3iTnqFZ83roWDhAvzFRUSkpND1vruxd0lr1BqFEEI0b00i/HzwwQc8/PDDTJkyhWHDhvHxxx9z3333kZycTGpqKhMnTmTkyJFMnz6dDRs2MH36dGJjYxk7dmyoSw9bfr/G56tz+HRVTvVuT7SFCed3o3unwO3JparKSU9nN5jMtL3xZry/biD1ugkYLJZGrk4IIURzF/bhR9d1nnvuOa677jquu+46AG6//XZ+/vln1q5dy9q1azGbzTz66KMYjUbS0tLYvXs38+bNk/BTh315pSz8ZAt78x3Vjv+pT1vGBqDbcyp0n4+iTz7ClJBA1JA/YYswEX3m6ShD+oe6NCGEEE1U+HzK1WHXrl3k5uYyevToasdffvllAG688UYGDBiA0fjHtzJ48GDmzp1LQUEB8fHhs6t4qFV2ez5ZlYMW5G7PyfAePMCh+XPx5PyGEhFB0qDTibHbQ12WEEKIJi7sw09OTg4AZWVlTJo0iS1bttCuXTtuvfVWhg8fzsGDB8nIyKj2NYmJiQDs379fws/v9tbR7Tmrb1suOzudSEv4/Cjouk7p18s5svRtdI8H1Wql442TiU1OCHVpQgghmoHw+cSrg8NR8WE9ZcoU7rjjDv7v//6PL774gttuu40FCxbgcrkwH7NRpeX3cSButzvo9YYbn19j6Yps3v16R5Po9viKjnB4wcu4fv0fANYePci4+w5sSYkhrkwIIURzEfbhx2SqWPF30qRJjBkzBoBu3bqxZcsWFixYQEREBB6Pp9rXVIYeq9Ua3GLDTJnLy99eXEX23qJqx//Upy1jh4dXtwfAX+Zk/6N/R3OUophMJFx5NZ3GXITRKFPYhRBCNJ7w+vSrRfLvi9Yd+2irS5cufPPNN6SkpJCfn1/tXOWvk5KSglNkmFq16UC14BOu3Z5KBqsN+5CzcGVtocPtt5OY0anGJqjNiabp7MotpsTpIdpmpnNKzCnvaC+EEOLEwj78dO/eHZvNxsaNG+nf/48ZPtu3b6dDhw6cdtppvPXWW/j9fgy/L3K3evVqOnXq1OLH+2SmxhFhNuDy+MO221O+dQvGVq0wJVWE3PjLxmKPvJromObdtduYfYilK7LJzXfg82sYDSopiXbGDU+nT7qMbRJCiEAKr0/CWkRERDB58mTmzJlDUlISvXv35pNPPuGHH37g1VdfpUuXLsyfP5+pU6cyefJkNm3axMKFC5k+fXqoSw+5dolRLJx2HkWlFY8B9RO8Ppg0r4ei95ZS8uUXmDun0WbKVAxGI9GxNmwRDd/ctCnZmH2IOUs3Uu7yEWUzYTKY8Po1cg6UMGfpRm4f10cCkBBCBFDYhx+A2267jcjISJ555hny8vJIS0tj1qxZDBpUsWv3/PnzmTFjBmPGjCEhIYEHHniganxQS2f9PUhUBqBw4N6zm8PzX8S7fz8A5vYdMKDTKtqCxdwkfiRPmqbpLF2RTbnLR3yMpeqxnkU1YI5WKShxs3RFNr3SWssjMCGECJAm80kzceJEJk6cWOu53r178/bbbwe5ItFQuqZR/PknFH3wPvj9qNExJFx/A3Gnn05MlAWjQQ11iQG3K7eY3HwHUTZTjfFMiqIQFWkiN9/BrtxiurSPDU2RQgjRzDWZ8COaNn9JCflznsO9cwcA1tP60/ov1xOd0Ipom7lZD2w+WonTg8+vYTLU/mjPZFRxlHspcXpqPS+EEOLUSfgRQaFareg+H0pEBPHXTCDqzD8RbTdjjzSf+IubkWibGaNBxevXsKg1p/B7fRWDn6NtLeu+CCFEMEn4EQHjLylBtVpRjEYUo5GEm25FMRqxJCYQa7cQUcf4nuY8BbxzSgwpiXZyDpRgjlardbx0Xae03Etqm2g6p8SEsEohhGjeJPyIgHD+8hMFixYQ9edhxI0ZB4ApKRmzUSU2yoKpjoULm/sUcFVVGDc8nTlLN1JQ4iYq0oTJqOL1aZSWe7FajIwbnt5swp4QQoSj5j/CtAXTNJ0de4vIyilkz8HSattbBOya5eUcfvVlDs2ZiVZaSvn/NlU87gIizAZaxUQeN/jMWbqRnP0lRFgMxEVZiLAYqqaAb8w+FPD6g6FPegK3j+tDaptoXB4/R0rduDx+UttEc5tMcxdCiICTzk8zVdlB2X/IQatoC0dKPcRFWxg1OJXM1FYBuaZr+zYOv/ISvsOHQVGIPu984i65DNVkxBZhOu7A5pY2BbxPegK90lo328d7QggRziT8NENHL6IXbTcRZTVT5vaRe8jB4i+yuPa8zEYNQLrXy5EP3qfki09B1zG2bk3rG24kIiMTVVWItpqwnWBgc0ucAq6qSrP5XoQQoimR8NPMHNtBUVUFRVUqxtrYzBQ5PXz+Yw4ZHeIarcvgKzpC6ddfga5jH3IWra66FjUyEpNBJcZurtfChTIFXAghRLBI+GlmTtRBsVlM5BWUsTevlI5tok/6OrquV72/KSGR+PHXoUREYOt3OgpgMRuItVsw1HPhQpkCLoQQIlhkwHMz80cHpfbfWqNRwa9pOMq8J30NX8Fh8p56gvKsrVXH7GcMwdbvdFQF7JFmWkVH1Dv4wB9TwEvLvOh69YHZlVPAUxLtMgVcCCHEKZPw08wc3UGpjc+nY1BV7NaGbx6q6zqOVSvJffRvuLK2UPjGInTtj+sYDAqxURai7Q1fsblyCnikxUhBiRu3x4+m6bg9fgpK3DIFXAghRKORx17NzIkW0XO6vaQk2GmfFNWg9/WXllLw+quU/bQeAEtaF1pPuglFrcjPFpOBGLsFk/Hk83TlFPDKdX4c5V6MBpXUNtHNZp0fIYQQoSfhp5k5dhG9aKsJXdPxeDWKnB4izUZGDU5tUAel7H8bKXj1ZfzFxWAwEHvxGGJGXYBiMKAoEGkxEmOzNEpXRqaACyGECDQJP83Q0R2U/YcclJZ5cHs1UhLsDV7nx7VzB/nPPQ2AqU1bWk++GUvHVABUBaKsZuzWxh2ELFPAhRBCBJKEn2aqegfFjcerkZJob3AHxdI5DevpAzDGxRF72eWo5oqgY1AVYuxmIi0NHzskhBBChJKEn2assoNS5vJSVOqmPptb6D4fxf/9nKg/D8Ngt6MoCgk331Y1tgfAaFCItVvqtX6PEEIIEW7k00tU8RzYz+H5c/HszsGzJ4eEm29HUZRqwedEG5MKIYQQ4U7Cj0DXNEq/Wc6RJW+je72oVivW0/rXmK4eYTIQG1X/hQuFEEKIcCThp4XzHSnk8IL5uLb8CkBE9x60njgZY9wfg6IVIMJiJNbeODO6hBBCiFCS8NOCubK3kz/rWbQyJ4rJRNzlVxI1bES1x1yKAtYIEzHH2ZFdCCGEaEok/LRgprYpKBYL5sREWk+6CXObttXOV25VESX7aQkhhGhGJPy0MO49uzG374CiKBhsNpL/bwrG+NYoxuo/CqqiEG03Y4uQqexCCCGaFxm52kJoHg8Fby3mwD8ewfHD91XHTUnJNYKPwaAQF22R4COEEKJZks5PC1C2axf7Z87Ge2A/QNX/10amsgshhGjuJPw0Y7rfz75332fPW++A348hJob46ydh7dWn1tfLVHYhhBAtgYSfZqr8wAGyn5lJ6bbtAFhP70/8+OsxRNXczb1yc9JYu0VmdAkhhGj2JPw0U57CI5Ruz8ZgtdJu4vUofQdWpJxjyIwuIYQQLY2En2ZE8/lQfx+8HNOjO13uuJWY3r3QouNq3dtLNicVQgjREsngjmaiYPUafr7ldspz/xjMnDRyBBGJibW+3mRQaRUdIcFHCCFEiyPhp4nzlZWR/dxssv79BO5Dh9m39L0Tfk2EyUB8TARmk8zoEkII0fLIY68mrPjXX8l+dhbu/EOgKKSMuYQO11xV5+srBzbH2GSPLiGEEC2XhJ8mSPN62bP4TXKXfQi6jiUxkfR77iSmR/c6v0ZVFWwRJhnYLIQQosWT8NMEHfziS3Lf/wCAxJEj6DRpIkZrZJ2vVxRkYLMQQgjxOwk/TVDyqHMp+mUDSeeOJH7QwBO+XkKPEEII8QcZ8NwEuPLy2fnCXDSvFwDVaKT73x+uV/ARQgghRHXS+Qljuq5z6Otv2PXSy/jLyzFGR9Px2qtDXZYQQgjRpEn4CVPekhJ2Pv8iBavXABCV2ZXE4WeHuCohhBCi6ZPwE4YK1//EjlnP4y0qQjEY6HDNVaSMuQTFIOvyCCGEEKdKwk+Y2f/hx/z28gIAItu3I+O+u7F37hziqoQQQojmQwY8h5lWA/tjiIyk7cUX0ffp/0jwEUIIIRqZdH5CTPP5KN64ibjTTwMgIjmZ016cgzk2JsSVCSGEEM1Tk+j85Obm0rVr1xr/W7JkCQBbt25l/Pjx9O3bl2HDhvHyyy+HuOL6Kdu7j00PPMyWf8ygaOOmquMSfIQQQojAaRKdn23btmGxWPjqq69QlD/2pIqKiuLIkSNMnDiRkSNHMn36dDZs2MD06dOJjY1l7NixIay6brqmceCTz9i96HU0jwej3Y7mdoe6LCGEEKJFaBLhZ/v27XTq1InExMQa5xYuXIjZbObRRx/FaDSSlpbG7t27mTdvXliGH/fhArJnzqb4905PbL++dLnzdizxrUJcmRBCCNEyNInws23bNrp06VLrufXr1zNgwACMxj++lcGDBzN37lwKCgqIj48PVpkndHjVanbMfgG/04lqNpM68TqSzz+vWjdLCCGEEIHVJMb8bN++nYKCAq655hrOPPNMrr76ar7//nsADh48SHJycrXXV3aI9u/fH/Raj0fzePA7ndjTu9DnmSdpc8EoCT5CCCFEkIV958fj8ZCTk0NkZCQPPPAAVquVDz/8kBtvvJEFCxbgcrkwm83VvsZisQDgDrNxNAlD/4xqNNJq8CBUY9jfeiGEEKJZCvtPYLPZzLp16zAajVUhp2fPnuzcuZOXX36ZiIgIPB5Pta+pDD1WqzXo9R6Poii0/tOQUJchhBBCtGhN4rGX1Wqt0d3JyMggLy+P5ORk8vPzq52r/HVSUlLQahRCCCFE0xD24ScrK4t+/fqxfv36asc3b95Mly5dGDBgAD/99BN+v7/q3OrVq+nUqVNYDXYWQgghRHgI+/CTkZFBeno606dPZ/369ezcuZPHH3+cDRs2cMsttzB27FgcDgdTp05lx44dvPfeeyxcuJCbb7451KULIYQQIgyF/ZgfVVV58cUXefLJJ7nnnnsoKSmhe/fuLFiwgK5duwIwf/58ZsyYwZgxY0hISOCBBx5gzJgxIa5cCCGEEOFI0XVdD3UR4WTEiBEALF++PMSVCCGEEKK+GvL5HfaPvYQQQgghGpOEHyGEEEK0KBJ+hBBCCNGihP2AZxFamqazK7eYEqeHaJuZzikxqKpsySGEEKLpkvAj6rQx+xBLV2STm+/A59cwGlRSEu2MG55On/SEUJcnhBBCnBR57CVqtTH7EHOWbiRnfwkRFgNxURYiLAZyDpQwZ+lGNmYfCnWJQgghxEmR8CNq0DSdpSuyKXf5iI+xYDEZUFUFi8lAfLSFcrePpSuy0TRZJUEIIUTTI+FH1LArt5jcfAdRNhOKUn18j6IoREWayM13sCu3OEQVCiGEECdPwo+oocTpwefXMBlq//EwGVV8fo0SpyfIlQkhhBCnTsKPqCHaZsZoUPH6tVrPe30Vg5+jbeYgVyaEEEKcOgk/oobOKTGkJNopLfNy7O4nuq5TWu4lJdFO55SYEFUohBBCnDwJP6IGVVUYNzydSIuRghI3bo8fTdNxe/wUlLixWoyMG54u6/0IIYRokiT8iFr1SU/g9nF9SG0Tjcvj50ipG5fHT2qbaG4b10fW+RFCCNFkySKHok590hPoldZaVngWQgjRrEj4Ecelqgpd2seGugwhhBCi0chjLyGEEEK0KBJ+hBBCCNGiSPgRQgghRIsi4UcIIYQQLYqEHyGEEEK0KBJ+hBBCCNGiSPgRQgghRIsi4UcIIYQQLYqEHyGEEEK0KLLC8zHy8/Px+/2MGDEi1KUIIYQQop4OHDiAwWCo12ul83MMi8WC0SiZUAghhGhKjEYjFoulXq9VdF3XA1yPEEIIIUTYkM6PEEIIIVoUCT9CCCGEaFEk/AghhBCiRZHwI4QQQogWRcKPEEIIIVoUCT9CCCGEaFEk/AghhBCiRZHwI4QQQogWRcKPEEIIIVoUCT9CCCGEaFEk/AghhBCiRZHwI4QQQogWRcJPAOTm5tK1a9ca/1uyZAkAW7duZfz48fTt25dhw4bx8ssvh7ji0Fq2bBkXXHABvXr14sILL+Szzz6rOif3qsKaNWtq/Znq2rUrI0aMAOReHc3r9fLMM88wbNgw+vXrxzXXXMPPP/9cdV7uVXVOp5N//vOfDB06lNNPP53bbruNPXv2VJ2X+wXPP/88EyZMqHbsRPdF0zRmzpzJWWedRZ8+fbjhhhvYvXt3MMsOmdruF8Bvv/1G37592bdvX7Xjbreb6dOnc8YZZ9CvXz/uuusuCgoKAlegLhrd8uXL9V69eul5eXl6fn5+1f/Ky8v1wsJCfdCgQfrUqVP1HTt26EuXLtV79eqlL126NNRlh8SyZcv0bt266a+++qqek5Ojz549W8/MzNR//vlnuVdHcbvd1X6W8vPz9ZUrV+rdu3fX33nnHblXx3juuef0IUOG6N9//72ek5OjT506VT/ttNP0gwcPyr2qxeTJk/WzzjpLX7Fihb5jxw79b3/7m37mmWfqhYWFcr90XV+wYIHetWtXffz48VXH6nNfZs2apZ9xxhn6N998o2/dulW/4YYb9HPOOUd3u92h+DaCprb7peu6npWVpQ8dOlTPyMjQ9+7dW+3cgw8+qJ9zzjn6unXr9I0bN+qXXnqpfu211wasRgk/AfDCCy/oF198ca3nXnzxRf2ss87SvV5v1bGnnnpKP++884JVXtjQNE0/++yz9X//+9/Vjt9www36iy++KPfqODwej37hhRfq99xzj67r8nN1rIsvvlh//PHHq35dWlqqZ2Rk6J9//rncq2Ns3bpVz8jI0L/55puqY36/Xz/33HP12bNnt+j7dfDgQX3SpEl637599VGjRlX7MD/RfXG73Xq/fv30N954o+p8cXGx3rt3b/3jjz8O3jcRRMe7X88//7zeu3dvfcyYMTXCz8GDB/XMzEz922+/rTq2a9cuPSMjQ//ll18CUqs89gqAbdu20aVLl1rPrV+/ngEDBmA0GquODR48mN9++y2wLb4wtGvXLnJzcxk9enS14y+//DI333yz3KvjWLx4MQcOHOChhx4C5OfqWLGxsXz99dfs27cPv9/P22+/jdlsplu3bnKvjvHbb78B0L9//6pjqqqSmZnJunXrWvT9+vXXX4mJieHDDz+kT58+1c6d6L5kZWXhdDoZPHhw1fno6Gi6d+/OunXrgvY9BNPx7tf333/Pf/7zH6ZMmVLj63766ScABg0aVHWsU6dOJCUlBexeSfgJgO3bt1NQUMA111zDmWeeydVXX833338PwMGDB0lOTq72+sTERAD2798f9FpDKScnB4CysjImTZrEGWecweWXX86KFSsAuVd1cbvdvPjii1x33XVV90PuVXVTp07FaDQyYsQIevXqxTPPPMOzzz5Lhw4d5F4dIyEhAaj4GTpabm4uBQUFLfp+DR8+nKeeeor27dvXOHei+1J5P9u0aVPjNQcOHAhQxaF1vPv1xhtvcO6559b6dXl5ecTFxWGxWKodD+S9kvDTyDweDzk5OTgcDu655x5eeuklevXqxY033sjq1atxuVyYzeZqX1P5G+52u0NRcsg4HA4ApkyZwkUXXcQrr7zCkCFDuO222+ReHccHH3yA2+2uNphQ7lV1O3fuJDo6mjlz5vD2229z2WWXMWXKFLKysuReHaNPnz6kpaUxbdo0Dhw4gMfj4dVXX2Xr1q14PB65X3U40X0pLy8HqPU1Lfm+1aa8vLzGfYLA3ivjiV8iGsJsNrNu3TqMRmPVb2bPnj3ZuXMnL7/8MhEREXg8nmpfU/mba7Vag15vKJlMJgAmTZrEmDFjAOjWrRtbtmxhwYIFcq/qsGzZMs4991zi4uKqjsm9+kNubi5//etfefXVV6se5fTq1YsdO3Ywa9YsuVfHMJlMzJkzhwcffJBhw4ZhNBoZNmwY48aNY/PmzXg8HrlftTjRz1FERARQ8Q/iyv+ufE1kZGTwCm0CaruXENh7JZ2fALBarTVSbEZGBnl5eSQnJ5Ofn1/tXOWvk5KSglZjOKhsGWdkZFQ73qVLF/bt2yf3qhaFhYX88ssvXHDBBdWOy736w6ZNm/B6vfTq1ava8T59+pCTkyP3qhadOnXi7bffZu3ataxevZo5c+ZQVFREamqq3K86nOi+VD7uqu01xz4ua+mSk5MpKiqqEYACea8k/DSyrKws+vXrx/r166sd37x5M126dGHAgAH89NNP+P3+qnOrV6+mU6dOxMfHB7vckOrevTs2m42NGzdWO759+3Y6dOgg96oWP//8M4qiMHDgwGrH5V79ofJDZ9u2bdWOb9++nY4dO8q9OobD4WD8+PFs3ryZmJgYoqOjKS0tZdWqVZx11llyv+pwovuSmZmJ3W5nzZo1VedLSkrYsmVLtcHlAk4//XQ0Tasa+AwVE2Ly8vICdq8k/DSyjIwM0tPTmT59OuvXr2fnzp08/vjjbNiwgVtuuYWxY8ficDiYOnUqO3bs4L333mPhwoXcfPPNoS496CIiIpg8eTJz5szh448/Zs+ePbzwwgv88MMPTJw4Ue5VLbKysmjfvn2NVrDcqz/07t2b/v37M2XKFH788UdycnJ49tlnWb16NTfddJPcq2PY7XYUReGxxx5j27ZtZGVlccstt9C2bVsuuugiuV91ONF9MZvNjB8/nieffJLly5eTlZXFvffeS3JyMuecc06Iqw8vSUlJXHjhhfztb39jzZo1bNq0ifvvv5+BAwfSt2/fwFw0IBPoW7iCggL9oYce0ocMGaL36tVLv/LKK/V169ZVnd+4caN+xRVX6D179tTPPvts/bXXXgthtaH3yiuv6MOHD9d79OihX3zxxfqXX35ZdU7uVXXTpk3Tr7jiilrPyb36Q1FRkf7oo4/qw4YN0/v166dfeeWV+po1a6rOy72qLi8vT7/zzjv1/v376wMHDtSnTJmiFxQUVJ2X+6XrU6ZMqbFo34nui8/n05944gl98ODBet++ffUbb7yxxuJ+zVVt90vXdf3HH3+sdZFDp9OpT506Ve/fv7/ev39//b777tMLCwsDVp+i67oemFglhBBCCBF+5LGXEEIIIVoUCT9CCCGEaFEk/AghhBCiRZHwI4QQQogWRcKPEEIIIVoUCT9CCCGEaFEk/AghgibQK2vIyh1CiPqQ8CNEMzd8+HAefPDBkNZw8OBBbr75ZnJzcwPy/iUlJUyZMqXGtjJNzaxZs+jatWuoyxCi2ZPwI4QIuFWrVvHNN98E7P23bt3KsmXL0DQtYNcQQjQfEn6EEEII0aJI+BGiBfB6vTzxxBMMGTKEvn37csMNN7B79+5qr1m/fj3jx4+nT58+DBw4kClTplBYWFjtNevWrWPSpEkMGDCAnj17Mnz4cGbNmlXVcdm3bx9du3ZlwYIFnH/++QwcOJD33nuPhx56CIARI0bU+QhuzZo1dO3albfeeouzzz6bM888k5UrVwKwZMkSLrvsMvr27Uvv3r255JJL+PTTT6u+7i9/+QsAf/nLX5gwYULVe3711Vdcdtll9OrViyFDhvCvf/2LsrKyqvOV9c6aNeu496+goICHH36YM888k379+nHttddW24Ha7XYzZ84cRo0aRa9evTj33HN56aWXanSiPv30Uy677DL69evHkCFDeOSRRyguLq7zuvv372fYsGGMGTOm6nVut5snnniCoUOH0rNnT0aPHl11LyoNHz6cxx57jOuuu47TTjuNqVOn8qc//Yn777+/xjXOP//8qt8fIVqMgO0aJoQIC2effbaemZmpT548Wf/uu+/0d999V+/fv78+ZsyYqtesXbtW79Gjhz5p0iR9xYoV+vvvv68PGzZMv/DCC/Xy8nJd13V969atevfu3fX77rtP//777/XvvvtOv//++/WMjAz9ww8/1HVd1/fu3atnZGTovXr10pcsWaJ/8cUX+r59+/RnnnlGz8jI0P/73//qu3fvrrXOyg0PBw4cqH/22Wf6smXL9NLSUv3111/XMzMz9dmzZ+s//vij/vnnn+tjx47Vu3fvrufm5la9JiMjQ3/99df17OxsXdd1/cMPP9QzMjL0+++/X//222/1N954Qx8wYIB+3XXX6Zqm6bqu6263W//ll1/0AwcO1Hn/nE6nPnLkSH3o0KH60qVL9ZUrV+o33nij3rdvX33Hjh26pmn69ddfr/ft21efN2+evnLlSv2pp57Su3Xrpv/tb3+rep85c+boGRkZ+qOPPqp/9913+uLFi/WBAwfqo0ePrrrHM2fO1DMyMnRd1/X8/Hz9nHPO0S+++OKqDR41TdMnTZqk9+vXT1+wYIH+3Xff6X//+9/1jIwM/f3336/2e969e3d9xowZ+sqVK/X169fr//nPf/TevXvrpaWlVa/bsGGDnpGRoa9du7Z+P0xCNBMSfoRo5s4++2x96NChusfjqTr29NNP6xkZGVUfhFdeeaV+0UUX6T6fr+o1u3bt0rt166a//vrruq7r+vvvv69PnjxZ9/v9Va/x+/366aefrv/973/Xdf2P8HP//fdXq+Hdd9+tdSfno1WGn6effrra8ccff1x/4oknqh3bvHmznpGRoX/00UfVvvbHH3/Udb0iJPz5z3/WJ02aVO3rVq1apWdkZOhff/113TfsGK+//rretWtXfevWrVXHXC6XPmrUKP3NN9/Uv/nmGz0jI0P/4IMPqn1dZdjJzs7Wi4qK9J49e+pTp06t9pp169bpGRkZ+uLFi3Vd/yP8FBYW6hdddJE+evToajtbr1y5Us/IyNA/+eSTau/zf//3f/qQIUN0r9er63rF7/mwYcOq/V7t2rVLz8jI0JcuXVp1bNq0afrIkSOrwqAQLYU89hKiBejduzcmk6nq1+3btwcqZkmVl5ezceNGhg4diq7r+Hw+fD4f7du3Jy0tjR9++AGASy+9lHnz5uH1esnOzuarr75i1qxZ+P1+vF5vtetlZGScdK3HznZ68MEH+etf/0ppaSn/+9//+Oijj1i8eDFAjetW2rVrFwcPHmT48OFV34/P52PAgAHY7faq76k+1q9fT7t27cjMzKw6ZrFY+Oyzz7jqqqtYu3YtBoOBCy64oNrXXXzxxUDFY7kNGzbg8XgYPXp0tdf079+flJQU1qxZU+345MmT2b59Ow899BBxcXFVx1evXo2iKAwdOrTa9zV8+HAOHTpEdnZ21WvT0tJQ1T/+iu/UqROnn346H3zwAQAej4dPP/2USy+9FEVR6n0/hGgOjKEuQAgReFartdqvKz8UNU2jpKQETdOYN28e8+bNq/G1FosFAJfLxT//+U8++OADfD4f7dq1o1+/fhiNxhrr67Ru3fqka42Pj6/26z179vDII4/w448/YjQa6dy5c1VAOva6lYqKigCYPn0606dPr3E+Pz+/3vUUFRXVqOloxcXFxMXFYTRW/+s0ISEBgNLS0qrxOrXdl9atW1NaWlrtWFlZGR07duTJJ5/knXfewWAwVNWi6zqnnXZarbXk5+fTrVu3Oq81btw4Hn74Yfbv38/GjRspKSlhzJgxdX5vQjRXEn6EaOFsNhuKonD99ddz4YUX1jgfGRkJwIwZM/jiiy949tlnOfPMM6sC1RlnnBGw2jRN46abbsJkMvHOO+/QvXt3jEYjO3bs4MMPP6zz66KjowF44IEHGDhwYI3zMTEx9a4hKiqKffv21Tj+yy+/YLfbiYmJ4ciRI/h8vmoBqDJgxcXFVV3v8OHDpKWlVXufQ4cOVXXiKi1atIjt27dzww03sGjRIiZOnFhVi9VqZdGiRbXW2rFjx+N+L6NGjeJf//oXX3zxBb/88gtnnHEGbdu2PcEdEKL5kcdeQrRwdrud7t27s2vXLnr16lX1v/T0dGbPnl31SOann35i0KBBjBw5sir4bN68mcLCwhOur3P045eGOHLkCL/99hvjxo2jd+/eVeHiu+++A6i6bmVnpFLnzp2Jj49n37591b6n5ORknnrqKbZs2VLvGvr378/evXvZtm1b1TGPx8Odd97JO++8w8CBA/H7/TVmXFWGs9NPP50+ffpgNpv56KOPqr1m/fr17N+/v0YnJyEhgSFDhnDhhRfy3HPPsXfvXgAGDhxIWVkZuq5X+76ys7OZM2cOPp/vuN+L1Wrlggsu4OOPP+b777+Xro9osaTzI4Tgvvvu46abbuL+++/n4osvxu/388orr7Bx40ZuvfVWoGLc0Geffcabb75JWloaWVlZvPDCCyiKQnl5+XHfv7IT8+WXX/LnP/+5RvejLvHx8aSkpLB48WKSk5OJjo5m5cqVLFy4EKDqulFRUQB88803xMTEkJmZyb333ssjjzyCwWDg7LPPpqSkhOeff568vDx69OgBVISYLVu2kJycTHJycq01XHbZZbz22mvceuut3H333bRq1YrFixfjcrmYMGEC7du3Z9CgQUybNo38/Hy6d+/O2rVrmTdvHmPGjKFLly4A3HTTTcyePRuTycSIESPYt28fzz33HF26dOGyyy6r9doPPfQQ3333HY888ggLFixg6NChDBgwgNtuu43bbruNtLQ0Nm3axKxZs/jTn/5Eq1atTnhPx40bx5VXXondbufcc8+t1++DEM2NhB8hBH/60594+eWXmT17NnfddRcmk4kePXqwYMEC+vbtC1QMPPZ6vTz77LN4PB7atWvHrbfeyo4dO1ixYgV+v7/O9x80aBBnnnkmTz31FKtXr+all16qd23PP/88M2bM4MEHH8RsNtOlSxdeeOEFHnvsMdavX8+ECRNIT0/noosuYvHixXz//fd8/PHHXH755dhsNubPn8/bb7+N1WrltNNO48knn6x6zJSfn8+VV17JHXfcwZ133lnr9e12O6+//jpPPPEEM2bMwOfz0adPH1577TU6dOgAwNy5c5k5cyaLFi2isLCQdu3ace+991Y9rgK48847ad26Na+//jpLliwhNjaWUaNGcc8991Q9WjxWQkIC9957L//4xz949913GTt2LC+99BLPPfccc+fOpaCggKSkJK6//npuv/32et3Pvn37EhcXx7nnnktERES9fx+EaE4Uva4Rg0IIIZqdTZs2cfnll/Puu+/Ss2fPUJcjREhI50cIIVqANWvWsGbNGpYtW8bgwYMl+IgWTQY8CyFEC3DkyBEWLFhAfHw8jz/+eKjLESKk5LGXEEIIIVoU6fwIIYQQokWR8COEEEKIFkXCjxBCCCFaFAk/QgghhGhRJPwIIYQQokWR8COEEEKIFkXCjxBCCCFaFAk/QgghhGhRJPwIIYQQokX5/zxNeJcbqiOeAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.regplot(data = heartRates, x=\"cookery\", y=\"horror\")\n",
"plt.xlabel('heart rate: cookery')\n",
"plt.ylabel('heart rate: horror')\n",
"\n",
"# add the line x=y (ie a line from point(50,50) to (110,110)) for reference \n",
"plt.plot([50,110],[50,110],'r--')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "337e7c00",
"metadata": {},
"source": [
"It looks like\n",
"
\n",
"
For most individuals heart rate is higher during the horror show (most data points lie above the line x=y)\n",
"
There is a strong effect of individual - people with low heart rates during the cookery show also have low heart rates during the horror show (hence data points are stretched out along the line x=y) \n",
"
\n",
"\n",
"It looks like individual differences in heart rate rather dwarf the effect of the type of TV show being watched. \n",
"Therefore it is a good thing that we used a paired design, in which these individual differences are controlled for (as we only look at the change in heart rate between conditions for each individual)."
]
},
{
"cell_type": "markdown",
"id": "4a939204",
"metadata": {},
"source": [
"### Check assumption of normality\n",
"\n",
"In the case of paired data, the assumption of the t-test is that \n",
"the differences between conditions (for each participant) are normally distributed - let's add a column to our pandas data frame to contain the differences"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "27e72564",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.kdeplot(data = heartRates, x='diff', fill=True)\n",
"sns.rugplot(data = heartRates, x='diff', height=0.1,)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "8feb5101",
"metadata": {},
"source": [
"The distribution looks fairly normal - for the sake of this example we can safely go ahead and use the t-test (although in real life I think it is always tricky to know if the data are really normally distributed, especially if the sample is small)"
]
},
{
"cell_type": "markdown",
"id": "3f7dcbaa",
"metadata": {},
"source": [
"### Hypotheses\n",
"\n",
"$\\mathcal{H_o}$: the mean difference in heart rate for an individual watching cookery or horror shows is zero\n",
"\n",
"$\\mathcal{H_a}$: the mean difference in heart rate is positive (higher heart rate for horror)\n",
" \n",
"This is a one tailed test as the researcher's hypothesis (described above) is directional - \n",
"she thinks horror movies increase heart rate\n",
"\n",
"We will test at the $\\alpha = 0.05$ significance level"
]
},
{
"cell_type": "markdown",
"id": "f87356aa",
"metadata": {},
"source": [
"### Descriptive statistics\n",
"\n",
"First, we obtain the relevant desriptive statistics. \n",
"By relevant, I mean the ones that go into the equation for the t-test:\n",
"\n",
"$$ t = \\frac{\\bar{d}}{\\frac{s_d}{\\sqrt{n}}} $$\n",
"\n",
"This would be the means difference in heart rate for horror-cookery $\\bar{d}$,\n",
"the standard deviations of the differences $s_d$ and the number of participants $n$.\n",
"\n",
"We obtain the descriptive statistics for each column in our dataframe using the describe() method as before:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "edf0066e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
cookery
\n",
"
horror
\n",
"
diff
\n",
"
\n",
" \n",
" \n",
"
\n",
"
count
\n",
"
20.000000
\n",
"
20.000000
\n",
"
20.000000
\n",
"
\n",
"
\n",
"
mean
\n",
"
72.620000
\n",
"
77.560000
\n",
"
4.940000
\n",
"
\n",
"
\n",
"
std
\n",
"
14.612489
\n",
"
16.678047
\n",
"
9.049013
\n",
"
\n",
"
\n",
"
min
\n",
"
53.900000
\n",
"
47.000000
\n",
"
-9.200000
\n",
"
\n",
"
\n",
"
25%
\n",
"
59.725000
\n",
"
66.750000
\n",
"
-2.700000
\n",
"
\n",
"
\n",
"
50%
\n",
"
72.600000
\n",
"
74.600000
\n",
"
5.100000
\n",
"
\n",
"
\n",
"
75%
\n",
"
85.250000
\n",
"
90.300000
\n",
"
12.125000
\n",
"
\n",
"
\n",
"
max
\n",
"
96.800000
\n",
"
111.400000
\n",
"
20.900000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" cookery horror diff\n",
"count 20.000000 20.000000 20.000000\n",
"mean 72.620000 77.560000 4.940000\n",
"std 14.612489 16.678047 9.049013\n",
"min 53.900000 47.000000 -9.200000\n",
"25% 59.725000 66.750000 -2.700000\n",
"50% 72.600000 74.600000 5.100000\n",
"75% 85.250000 90.300000 12.125000\n",
"max 96.800000 111.400000 20.900000"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"heartRates.describe()"
]
},
{
"cell_type": "markdown",
"id": "c451bdf8",
"metadata": {},
"source": [
"So the mean difference is 4.94 beats per minute (higher in the horror condition). This is quite large compared to the mean heart rate in each condition (72.6 bpm in the cookery condition and 77.5 in the horror condition) - more than 5% difference. So on average the horror movie is producing quite a noticeable increase in heart rate. **Because the difference in mean heart rate is better understoon in the cotext of knowing the mean in each condition, I think it is good practice to report the condition means** (mean for cookery and horror) **even though thhey don't get used in the t-test.**\n",
"\n",
"The standard deviation of differences is 9.04 bpm. This is lower than the standard deviation within each condition (14.6 and 16.7 for cookery and horror), which reflects the correlation between heart rates in the two conditions, as seen in the scatter plot above.\n",
"\n",
"The number of participants is 20."
]
},
{
"cell_type": "markdown",
"id": "ef4dbdfe",
"metadata": {},
"source": [
"### Carry out the test\n",
"\n",
"We carry out a paired samples t-test using the function `stats.ttest_rel` (that's rel for related samples) from `scipy.stats`."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "c33aecaa",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"TtestResult(statistic=2.4414101572270717, pvalue=0.012293439285066588, df=19)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"stats.ttest_rel(heartRates.horror, heartRates.cookery, alternative='greater')"
]
},
{
"cell_type": "markdown",
"id": "745b0501",
"metadata": {},
"source": [
"The inputs to stats.ttest are the two samples to be compared (columns from our Pandas data frame heartRates) \n",
"and the argument alternative='greater', which tells the computer to run a one tailed test \n",
"that mean of the first input heartRate.horror is greater than the second heartRate.cookery.\n",
"\n",
"The outputs are statistic ($t=2.44$) and pvalue ($p=0.0122$) - if this is less than our $\\alpha$ value 0.5, there is a significant difference\n",
"\n",
"\n",
"### Degrees of freedom\n",
"\n",
"In a scientific write-up we also need to report the degrees of freedom of the test. This tells us how many observations (data-points) the test was based on, corrected for the number of means we had to estimate from the data in order to do the test.\n",
"\n",
"In the case of the paired samples t-test $df = n-1$ where $n$ is the number of pairs, so in this case, df=19 and we can report out test results as:\n",
"\n",
"$t(19) = 2.44, p=0.0122$ (one-tailed)\n",
"\n",
"### Interpretation\n",
"\n",
"Our t value of 2.27 means that the mean increase in heart rate from the cookery to horror conditions is 2.27 times the standard error (where $ SE = \\frac{s}{\\sqrt{n}}$). \n",
"\n",
"Such a large difference (in the expected direction) would occur 0.0123 (1.23%) of the time due to chance if the null hypothesis were true (if the TV show made no difference to the heart rate), hence the p value of 0.0123.\n",
"\n",
"This diagram shows the expected distribution of t-values if the null hypothesis was true, with our obtained t-value marked:\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "d41905aa",
"metadata": {},
"source": [
"## Write-up \n",
" \n",
"\n",
"
\n",
" \n",
"Above, I walked you through how to run the t-test and why we make different choices. \n",
" \n",
"In this section we practice writing up our analysis in the correct style for a scientific report. \n",
" \n",
"Replace the XXXs with the correct values! \n",
"\n",
"
\n",
"\n",
" "
]
},
{
"cell_type": "markdown",
"id": "541151e1",
"metadata": {},
"source": [
"We tested the hypothesis that heart rate increases when watching a horror show as opposed to a cookery show.\n",
"\n",
"For 20 participants, average heart rate was measured over 30min watching a horror show and, on a separate day, 30min watching a cookery show (repeated measures design). The order of conditions was counterbalanced.\n",
"\n",
"Data are shown below - there appears to be a strong effect of resting heart rate (individuals with high heart rates in one condition have high heart rates in the other condition) and heart rates are generally higher in the horror condition:\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d94629f2",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/XElEQVR4nO3dd3hUddr/8fc505KZSSOkQCiBkBA6KE1ZFwRU7CLYYRXB3vVZcWVXZF10f66VoiIogmIDFbuugh2kqMAiBAJIC5BAQspMpp/z+yMmEpJAApmS5H5d13M9cs5Mzp1DNvPhPt+i6LquI4QQQgjRQqjhLkAIIYQQIpQk/AghhBCiRZHwI4QQQogWRcKPEEIIIVoUCT9CCCGEaFEk/AghhBCiRZHwI4QQQogWRcKPEEIIIVoUY7gLiDT9+/fH6/WSlJQU7lKEEEIIUU8HDx7EbDazdu3a475Wws9RPB4PgUAg3GUIIYQQogH8fj/13bRCws9RkpOTAVi2bFmYKxFCCCFEfY0YMaLer5UxP0IIIYRoUST8CCGEEKJFkfAjhBBCiBZFwo8QQgghWhQJP0IIIYRoUST8CCGEEKJFkfAjhBBCiBZFwo8QQgghWhQJP0IIIYRoUWSFZyGEEMekaTo78koodXqJtZnpnBaHqirhLkuIEybhRwghRJ3W5x5kyfJc8goc+AMaRoNKWrKdscMz6ZMpG0CLpkkeewkhhKjV+tyDzF6ynp37SomyGEiIsRBlMbBzfymzl6xnfe7BcJcoxAmR8COEEKIGTdNZsjwXl9tPYpwFi8mAqipYTAYSYy24PH6WLM9F0+q3i7YQkUTCjxBCiBp25JWQV+AgxmZCUaqP71EUhZhoE3kFDnbklYSpQiFOnIQfIYQQNZQ6vfgDGiZD7R8TJqOKP6BR6vSGuDIhTp6EHyGEEDXE2swYDSq+gFbreZ+/YvBzrM0c4sqEOHkSfoQQQtTQOS2OtGQ7ZeU+dL36uB5d1ylz+UhLttM5LS5MFQpx4iIu/Dz33HOMHz++xvHffvuNvn37snfv3mrHPR4P06ZN47TTTqNfv37ceeedFBYWhqpcIYRollRVYezwTKItRgpLPXi8ATRNx+MNUFjqwWoxMnZ4pqz3I5qkiAo/r7zyCjNmzKhxfMuWLUyYMAGXy1Xj3MMPP8wPP/zAzJkzWbBgAXv27OGuu+4KRblCCNGs9clM4raxfUhvE4vbG+BwmQe3N0B6m1huHdtH1vkRTVZELHKYn5/PlClT+Omnn+jUqVO1c88//zwvvPACGRkZ7N+/v8b7li5dypw5c+jfvz8ATz31FKNGjWLdunX07ds3VN+CEEI0S30yk+iV0VpWeBbNSkR0fn799Vfi4uL44IMP6NOnT7Vz3333Hf/5z3+YPHlyjff99NNPAAwaNKjqWKdOnUhJSWHNmjXBLVoIIVoIVVXo0j6eU7KT6dI+XoKPOGG6ptUYQxYOEdH5GT58OMOHD6/13Ouvvw7AqlWrapzLz88nISEBi8VS7XhycnKNLpEQQgghwsedX0DuszNJGTmc5OFnhrWWiAg/J8rlcmE215xmabFY8Hg8YahICCFEJAoENAx1rFkkgkvXdQ5+9TU7XnyJgMuFe/8BWp/xJ1STKWw1NenwExUVhddbc4Etj8dDdHR0GCoSQggRaby+ACUOD0kJ1nCX0uL4SkvZ/twLFK6seHoTk92VzLvvDGvwgSYeflJTUykuLsbr9VbrABUUFJCamhrGyoQQQkQCl8dHiUNWoQ6HorU/sW3mc/iKi1EMBjpcfSVpoy9GMRjCXVrTDj+nnnoqmqbx008/cdpppwGwY8cO8vPzq2Z/CSGEaJnKnF4cLi+ajgzSDjHXvn1s/tdjoOtEt29H1r13Ye/cOdxlVWnS4SclJYXzzz+fv//97zz66KNER0czdepUBg4cKNPchRCihdI0nRKnB5fHTwRMLGqRotu2Je2Si9ADATqOvwa1lvG54dSkww/AI488wqOPPsrtt98OwJ///Gf+/ve/h7kqIYQQ4eAPaJSUeXD7AuEupUXR/H72Ln6HpKFnEN22LQAdrx2PokRmx03RI2HCfQQZMWIEAMuWLQtzJUIIIRrC4wtQUuapdTNWVVVok2gLQ1XNX/mevWx9egbO7duJ6ZpFr39PR1FDP7OuIZ/fTb7zI4QQQlQObA5o8u/5UNE1jf0ff8quha+heb0YY+y0vfjCsASfhpLwI4QQokk7cmCzCA3PoUJyZ8yiZP0GAOL79aXLHbdhSWwV5srqR8KPEEKIJkkGNoeH87ed/G/KQwScTlSzmfQJ15J67jkRO76nNhJ+hBBCNDmBgEaxDGwOi+h2aUSlpqCoKpl334m1XVq4S2owCT9CCCGaFJ8/QHGZB6+/5sBmERwlv24iJisT1WRCNZno/vcHMcbGoBqbZoyI/FFJQgghxO9cHh+FJW4JPiES8HjY8eJLbHzwH+x5e0nVcXOrhCYbfEA6P0IIIZoIGdgcWmW528h9ZgauvXkABMrL0XW9SY3tqYuEHyGEEBFNBjaHlh4IsPed99jz5tvogQCmhAQy77yNhFP6hbu0RiPhRwghRMTy+TVKHB48MrA5JNwHDrD1qWcp27IVgMQhp5Fx802YYmPCXFnjkvAjhBAiInm8foodHvwBafeEiq5pOHfuwmCz0vnGG0gaekazeMx1NAk/QgghIo7T5aXU6UOT51xBF3C7MURFARUbknb9673Y0jtiSUoKc2XBI7O9hBBCRAxd1ylxeChxeiX4hMChFSv56cZbKNn4a9WxVgP6N+vgA9L5EUIIESECmk5xmQeP14/EnuDyO53smPsyB7/6GoB9H3xIXM8e4S0qhCT8CCGECDtZuDB0Sjb+Su4zM/AcPASqSrtLL6H9lZeHu6yQkvAjhBAirNy/D2wOyMDmoNJ8Pna99jr73v8QdJ2o1BQy776T2G7Z4S4t5CT8CCGECBtHuZeychnYHApFq9eyb+kHAKScNZL066/DaI0Oc1XhIeFHCCFEyOm6TonTS7nbJwsXhkji6YNJOecsEk49lcRBA8JdTljJbC8hhBAhFQhoFJW6KXdJ8Akmd34+OY8/ga+sDABFUehy680tPviAdH6EEEKEkNcXoMQhA5uDSdd1CpZ9xY65L6G53RgsUWTedXu4y4ooEn6EEEKEhMvjo8ThJSA7kwaNr6SEbbNfoGjVagBiu3ej/ZWXhbmqyCPhRwghRNDJjuzBV7RmLdtmPoevpATFaKTD1VeSdslFKAZDuEuLOBJ+hBBCBI3syB4a+V8uY9vM5wCwdmhP5j13Ye/cKcxVRS4JP0IIIYLCH9AoKfPglh3Zgy5x8CB2v/E2rYecRsdxV6OazeEuKaJJ+BFCCNHovL6KFZt9ARnYHAyaz8eh738gadhQFEXBaLfTb+YzLXbdnoaS8COEEKJRub1+iss8MrA5SMp372Hr08/i3PEbekAjZeRwAAk+DSDhRwghRKNxun2UOmRH9mDQNY39H33CzoWvoft8GGPsGG22cJfVJEn4EUII0ShkRlfweA4eInfGLEo2/A+A+FP6kXnHbZhbJYS5sqZJwo8QQoiTous6pU4vTtmqIigKV60m99mZBJzlqGYz6ddfS+qoc1AUJdylNVkSfoQQQpwwTdMpdnhwe/xI7gkOo91GoNyFPTOTrHvuJDqtbbhLavIk/AghhDghgYBGsUxlDwpv0eGqR1pxPXrQ4+F/ENerpyxY2EhkY1MhhBAN5vMHKCp1S/BpZAGPh+1z5vLTLbfjyttXdTy+bx8JPo1IOj9CCCEaxOP1U+zw4A/Ig67GVJa7ja1PPYt7X0XoOfzzz/KIK0gk/AghhKg32Zy08emBAHsWv8OetxaDpmFu1Youd95GQr++4S6t2ZLwI4QQol4cLi9lTp+s4dOIXHn72Pr0DBy5uQAkDjmdjFtuxBQTE+bKmjcJP0IIIY6r1OHF4fbKVPZGdvDb73Dk5mKwWcm46UZa//lPMoU9BCT8CCGEqJOuV0xll13ZG4+u61UBp91lY/CXOUgbfTGWpNZhrqzlkNleQgghahXQdIpKPbjcEnway6EfVvLr1H+i+XwAqEYjnW+cKMEnxKTzI4QQogb/72v4eGQqe6PwO53sePElDn79DQAHPvucthdeEOaqWi4JP0IIIarx+gIUl3nwBbRwl9IslPxvI1ufmYn30CFQVdqNGU3qqHPCXVaLJuFHCCFEFY/Xz2GHh0AzWcNH13XWbT3Ixh2FnHd6Or27JIXs2prXy65Fb7Dv/Q9B14lKTSXz7juI7ZYdshpE7SJqzM9zzz3H+PHjqx3bvHkz48aNo2/fvgwbNoyXXnqp2nlN05gxYwZnnHEGffr04frrr2fXrl2hLFsIIZqFcrePw2XNJ/iUOj3Mee9/zHnvf/ywfh+PvrIGPYSDl7a/MJd9Sz8AXSflnLPo+8wTEnwiRMSEn1deeYUZM2ZUO3b48GEmTJhAeno677zzDnfccQfPPvss77zzTtVrnnvuOd58803+9a9/8dZbb6EoCjfccANerzfU34IQQjRZjnIvJQ5Ps1i8UNd11mw6wLR5q1i39WDV8VaxlpBOI2932RiiUlPp9ve/0eXWmzFER4fs2uLYwv7YKz8/nylTpvDTTz/RqVOnaufefvttzGYzDz/8MEajkYyMDHbt2sXcuXMZM2YMXq+Xl19+mb/+9a8MHToUgKeffpozzjiDL774gvPPPz8c35IQQjQZuq5T6vTidPuaxYyuUqeHNz7fwi9HhB6ArA4JTB7fP6jXdh84wOFf1tPm3IrxPNFtUjnluRmyJ1cECnvn59dffyUuLo4PPviAPn36VDu3du1aBgwYgNH4R0YbPHgwv/32G4WFheTk5OB0Ohk8eHDV+djYWLp3786aNWtC9j0IIURTpGkVa/g4XU0/+FR1e+b+WC34WEwGrjy7K/decwrJraxBu3b+F1/yy133seOFFyne8L+qcxJ8IlPYOz/Dhw9n+PDhtZ47cOAAWVlZ1Y4lJycDsG/fPg4cOABAmzZtarxm//79QahWCCGah4CmU1zmxu1t+lPZS50eXv98S7VHXABZHeL5y3ndaR0fjRqkx13e4hK2P/c8Rasq/sEd270bUSnJQbmWaDxhDz/H4na7MZvN1Y5ZLBYAPB4PLpcLoNbXlJSUhKZIIYRoYnx+jeIyN15/057Krus6azfn8+Z/t+B0+6uOW0wGRp/ZhT/3Swta6AEoXLWG7bOfx1dSgmI00uGaq0i7+ELp9jQBER1+oqKiagxc9ng8AFitVqKiogDwer1V/135mmgZWCaEEDU0lzV8Shwe3vhvzW5P1w4JjD+vG63jg/sZ8NvLr1RMYQesHTuQdc9d2DqlB/WaovFEdPhJTU2loKCg2rHKP6ekpOD3+6uOdejQodprsrNlOqEQQhzJ7fVTXNa0Z3Qdq9tz6ZldOCPI3Z5Ktk7poCi0vfhCOl5zFepRTyBEZIvo8DNgwADefPNNAoEAht/biCtXrqRTp04kJiYSExOD3W5n1apVVeGntLSUTZs2MW7cuHCWLoQQEcXp9lHq8KI14ZHNdXZ7OiYw/tzgdns0nw/3gXys7dsBkDRsKLZOnbCldwzaNUXwRHT4GTNmDPPmzWPKlClMmjSJDRs2sGDBAqZNmwZUjPUZN24cTzzxBK1atSItLY3//Oc/pKamctZZZ4W5eiGEiAxlTi8Ol5em2vCpmMmVz1tfhKfbU757N1ufmoG3uJh+M57GFBuDoigSfJqwiA4/iYmJzJs3j+nTpzN69GiSkpK4//77GT16dNVr7rzzTvx+P3//+99xu90MGDCAl156qcYgaCGEaGmawxo+JY6KmVzrc0M/tkfXNPZ9+DG7Xl2E7vNhjInBlZeHKVaGVTR1ih7Ktb6bgBEjRgCwbNmyMFcihBAnrnINH7fHT1P8Ja/rOqt/7/aUN0K3R1UV2iTa6v16z8GD5D47i5L/bQQg4dRT6HLHrZgTEur/TYiQasjnd0R3foQQQjScP6BRUubB7Wuaa/hUdHtyWJ97qNrxUIztASj4+lt2vDiXgLMc1WKh0/XXkXLOWSHdGkMEl4QfIYSIEJqmsyOvhFKnl1ibmc5pcahqwz5wm/JU9jq7PWYDY87swhl900ISQIp//oWAs5yYrllk3n0H0W3bBv2aIrQk/AghRARYn3uQJctzyStw4A9oGA0qacl2xg7PpE9mUr2+hsvjo8ThbZJT2cPd7dEDgarFCTvfOAlb5060vfB8WbCwmZLwI4QQYbY+9yCzl6zH5fYTYzNhMpjwBTR27i9l9pL13Da2z3EDUMWMLl+Tm8oe7m5PwO1m5yuv4i0sJPvBySiKgtFuI+2Si4J2TRF+En6EECKMNE1nyfJcXG4/iXGWqg96i2rAHKtSWOphyfJcemW0rvURWEDTKXF4cHv9TW5GV13dnuyOCYwLQbenbGsuW5+egXvfvoo/b9lKbHbXoF5TRAYJP0IIEUY78krIK3AQYzPV6HAoikJMtIm8Agc78kro0j6+2nmvL0CJw9Pk9uiq7Pa8ffS6PSHq9mh+P3sXv8Oet5eApmFObEXmnbdL8GlBJPwIIUQYlTq9+AMaJoOp1vMmo4rD5aPUWX2fw6Y6vqfE4WHRZzls2Baebk/53jxyn5mBI3cbAK3//CcybroBo90e1OuKyCLhRwghwijWZsZoUPEFNCxqzcG1Pn/F4OdY2x8LtzbFFZt1XWf1rwd468utYZvJpWsaWx5/gvJduzHYbGTcfANJfz4jqNcUkUnCjxBChFHntDjSku3s3F+KOVatFgB0XafM5SO9TSyd0+LQ9YqFC12epjW+J9zdnkqKqpJxy03seWsxXW6/FUvrxJBcV0QeCT9CCBFGqqowdngms5esp7DUQ0y0CZNRxefXKHP5sFqMjB2eiQ4cLnXj8QaazIrNkdDtca5djeZ2E/fnoQDEdsumx8P/COo1ReST8COEEGHWJzOJ28b2qVrnx+HyYTSopLeJ5bLhmXTvnFgRfJrQis3h7vYEyp0ULXoV56qVKGYz1q5dITEjqNcUTYeEHyGEiAB9MpPoldG6xgrPAU3ncKm7yczoioRuj2vzJg69PJfA4SJQFGLPPhdjYuugXlM0LRJ+hBAiQqiqUm06u8+vcbjU3WS2qqiz25PeivHnZpMYF9xuj+bzUvzuEkq/+BwAY3IKrSfeSFRGF5QGbhMimjcJP0IIEYF8/gCHS5vGHl3H6vaMHZ7Jn/q0Df5MLr+f/Y8+gm/PbgDsQ8+k1WVXokZFBfW6ommS8COEEBHG4/VT7PDgD0T+0OZwd3sqKUYj1r6nUFZSQuvrrsfau29IriuaJgk/QggRQcrdFQsanszihZqmsye/DEe5D7vVRPuUmAbvDn88uq6z6tcDvP3FVso94en2+Ary0QMBzG0qdl2PP/9CYoePxBATE9TriqZPwo8QQkSIxli8MGdnEZ/9uJP8wnICmoZBVUlJtDJqcDrZ6a0apc7isoo9ucLV7dF1Hcd331D01usYk1No++BDKCYTitEowUfUi4QfIYQIs4CmU+o8+cULc3YWsejzHNweP7ZoE0aDEX9AJ++gg0Wf53DNOdknFYDq6vZEmQ2MCVG3J1BSwqEFL+PasA4ANToazeXCYKp9exAhaiPhRwghwsjnD1BcdvKbk2qazmc/7sTt8RNvN1eFELNRwWQzU+z08tmPO8nqkHBCj8CKyyrG9vxve/VuT7f0Vow/txut4oI/sNj5y08ULpyPVlYGRiMJo8cQe9YoFFUN+rVF8yLhRwghwsTl8VHi9BJohIHNe/LLyC8sxxZd++7wNouJ/MJy9uSX0bFNbL2/rq7rrNp4gLe/DF+3R/N6KXr9VRzffwuAqV17kibdhLld+6BeVzRfEn6EECLEdF3HUe5r1M1JHeU+ApqG0VD7r3WjUaHco+Eo99X7a0ZCtwcqZnL5DuyvWLDwnHNJuPhSFHnMJU6ChB8hhAihgKZTXObB42vczUntVhMGVcUf0DEba3Zi/H4dg6pitx4/NByr2zN2RCZDeodg3R6fDx0d1WRGUVVaT7yRwOEiorKyg3pd0TJI+BFCiBDx+AKUOk5+fE9t2qfEkJJoJe+gA5PNXGN3eKfHR1qSnfYpx54NVVe3p3unVowbFZpuj3fvHg7Om0N0djdaXXkNAKakZExJyUG/tmgZJPwIIUQION0+yk5y/Z5jUVWFUYPTWfR5DsVOLzaLCaNRwe+vCD7RZiOjBqfXOdhZ13V+3HiAxeHs9mgapV98zuH3loDfT6CkhLgLL8FgswX1uqLlkfAjhBBBpGk6peVeyt2+Oh9zNdaihNnprbjmnOyqdX7KPRXr/KQl2Y+5zk8kjO3xFx7i0MtzcW/JASC6d19aX3u9BB8RFBJ+hBAiSHx+jRKHB48vUOdrGntRwuz0VmR1SKhXmIqIbo+u41z5A4VvvIbucqFYLLS64mrsZwwN+rVFyyXhRwghgqA+09iDtSihqirHnc5+uMzN65/l8L/thdWOh3JsD4DmKKPwjUXoLheWjC60nngjpuSUkFxbtFwSfoQQohHVdxp7sBclPFZ9P/4+k8sVpm7PkQwxsSSO+wv+Q4eIG3UeisEQsmuLlkvCjxBCNJJAQKPY4cXj9XO8Yc3BWpTwWCKh26N5PBx++w2i+/TD2rsPAPZBpwX9uvIATRxJwo8QQjQCj9dPicOLL1C/aezBWJSwLrqus/J/+1m8LLdGt+eyEVmc3rtNSLo9nh3bOThvDv6CfMrX/ULUY/9BNZuDek1VAbPJiD1aPu7EH+SnQQghTpKj3EtZuQ+tAasWNuaihMdyuMzNos9y2Fhbt+fcbrSKDX63R/f7Kf7oA0o++RA0DUNCK1pfPymowefI0GMxy0edqE5+IoQQ4gSdzG7sjbUoYV3q7PZYDFw2PHTdHu/+fRyaNwfvrp0A2AadRqtrxmOwBmcKu4QeUR/ykyGEECfA6wtQchKrNZ/sooTHEgndHgDfwYPs/+dD6D4fqtVG4rhrsQ0cFJRrSegRDSE/IUII0UCNtVrziS5KWJdI6fZUMiUlYe0/gEBpKa2vm4gxoeHT9o9HVcBiNmKLNmExyUwxUT8SfoQQop7qs1pzQzVkUcJjiZRuj3PtaiyZWRjj4gFIHD8BxVRzRtvJUhWFKIsBW5QJs4Qe0UASfoQQEUvTdHbklVDq9BJrM9M5La5R17xpiPqs1nyi6rMoYV0ipdsTcDopWrQQ5+ofie7dl+Q77kZRlEYf1FwZeuzRJkxGCT3ixEj4EUJEpPW5B1myPJe8Agf+gIbRoJKWbGfs8Ez6ZCaFtJb6rNYcDnV1e3p0TuSaUdkh6/a4Nv3KoflzCRw+DKqKuWM66Do0YuhSFYiyGCX0iEYh4UcIEXHW5x5k9pL1uNx+YmwmTAYTvoDGzv2lzF6yntvG9glJANJ1nTKnD6f72Ks1h1qkdHs0r5fD7y6m7Mv/AmBMSSFp4k1YOmc02jUqQ4883hKNScKPECKiaJrOkuW5uNx+EuMsVR/iFtWAOValsNTDkuW59MpoHdRHYP6ARklZxWOuCMo9x+z2jBuVTUKoZnLl51Mw6xl8+/cBEDNsOAmXXYlqsTTK15fQI4KpweFnxYoV9O3bF6vVGox6hBAt3I68EvIKHMTYat/2ISbaRF6Bgx15JXRpHx+UGiLxMdexuj2Xj8jitF6hnclliItF9/swxMWReN1ErL36NMrXldlbIhQaHH7uv/9+Jk+ezIUXXhiMemrldDp56qmn+PLLL3E4HAwaNIgHHniADh06ALB582amT5/Oxo0biY+PZ/z48UycODFk9QkhGk+p04s/oGEy1L6yscmo4nD5KHV6g3L9Mqf3uJuShtrhUjevfZbDrzvC2+3xFxZiSEhAUVXUqGiSb78bQ2wchpgTW4jxSIoCFlPFQObGXqcnkgbOi8jQ4J8ws9mMpZHamvV19913s2XLFqZNm0aHDh145ZVXuOqqq/joo48AmDBhAiNHjmTatGmsW7eOadOmER8fz5gxY0JapxDi5MXazBgNKr6AhkWt+S9/n79i8HOsrXFnEQU0nRKHB7e34as1B4uu66zYsJ/Fy7fi9vwxyyzaYuSyEZkh6/bouo7j268peut1EsZeTuzwswAwp7U76a+tKGAxGrBZTUQFYXHCSBo4LyJHg3/SbrrpJh566CFycnLIzMykdevWNV4zYMCARikOICcnh2+//ZYXX3yRoUOHAjBt2jRWr17N66+/jtFoxGw28/DDD2M0GsnIyGDXrl3MnTtXwo8QTVDntDjSku3s3F+KOVatse1DmctHeptYOqfFNdo1fX6N4jL3Ca/WHAwR0+0pKaZwwcu4NqwHwPW//xFz5sgGhy5N06utZdQhNaai02M1EW05uf3L6hIpA+dF5Glw+Jk6dSoAzz33HECNX0yKorB58+ZGKg9+++03APr37191TFVVsrOzWbNmDSaTiQEDBmA0/vGtDB48mDlz5lBYWEhiYmKj1SKECD5VVRg7PJPZS9ZTWOohJtqEyaji82uUuXxYLUbGDs9stMcWHq+fYocHf4SM74mUbg+A8+e1FC6cj+ZwgNFEwqVjiR15doOvn7OzqGoVa6NRIcEeRdskG+cMTicpoeY/oBtDpAycF5GpweFn4cKFwaijTklJFan8wIEDZGT8MX0yLy8Pj8cDQFZWVrX3JCcnA7Bv3z4JP0I0QX0yk7htbJ+qxxUOlw+jQSW9TWyjPq5wun2UOrwN2o09mCKl26O5XBS98RqOFd8DYGrfgaRJN53QY66cnUUs+jwHXdNp29qGNcqIy+vn19+K2LK7OGjdl0gYOC8iV4PDz8CBA4NRR5369OlDRkYGU6dO5T//+Q+JiYm8/vrrbN68mXbt2qFpGuajVhCtHJNUGY6EEE1Pn8wkemW0DtpA1Uga2BxJ3R4AX/4BHD+uAEUhbtR5xF80GsXU8EdTmqbz5ZrdWC0mkhMsaBo4yn34AhqxVlNQuy/hHjgvItsJjS777bffmDlzJqtWraK0tJSEhAT69+/PbbfdVq070xhMJhOzZ8/mgQceYNiwYRiNRoYNG8bYsWPZuHEjXq8Xr7f6D29l6JHp+EI0baqqNPq/ynVdp8TZuPtznYxI6fZUDlsAsKR3otVV4zC3a09UZtZx3lm3gkInWkAnzm7C6fJXG1MV7O5LuAbOi6ahweFn27ZtXHnllRiNRs4880xat27NwYMH+eqrr/j6669ZvHhxowegTp068dZbb1FSUoKiKMTGxnLXXXeRnp5OaWkpBQUF1V5f+eeUlJRGrUMI0bRpmk6xw4Pb4w/7woXH6vZcPjKLwT1TQ9bt8e7ZzaEFL9P62usxt69YQiT2zBEn/PUMqoLVYuKQycDhMjfRFmOtnZ1gdl/CMXBeNB0NDj9PPPEE7dq149VXXyXmiLUdysrKuPbaa3n66aeZNWtWoxXocDi4+eabeeCBB+jZs2fVtVasWMGUKVMoKCjgzTffJBAIYDBUpPuVK1fSqVMnGe8jhKji8wcoLvNExIyuotKKVZqP7vb0zKjYkyshJkTdHk2j9L+fcXjpO+D3U/T2m6Ted/8Jfz1VUbBGVSxQaDSo2KJM+AN6WLovoR44L5oWtaFvWLNmDTfffHO14AMQExPDjTfeyJo1axqtOAC73Y6iKDz66KNs2bKFnJwcbr75Ztq2bcsFF1zAmDFjcDgcTJkyhW3btvHuu++yYMECbrrppkatQwjRdLk8PgpLwj+VXdd1fli/j3++9GO14BNtMXLt+d25bWyfkAUf36GDHHji3xxe8hb4/UT37UfSDTef0NeqDD2t46OJs1swGio+Wiq7L2XlPvSjnjFWdl/Sku1B675UDpxPbxOL2xvgcJkHtzdAeptYbpVp7i1agzs/levq1MZsNtcYf9MYnnzySf71r38xbtw4VFXlzDPP5P7778doNJKYmMi8efOYPn06o0ePJikpifvvv5/Ro0c3eh1CiKYnUgY219Xt6ZWRyNWh7PboOo4V31P0xmvobjeKJYpWV12DfcgZDX7MVrkVhT269v23IqH7EuyB86JpUvSj4/hxTJo0CV3XmTdvXo1nqBMnTsTn8/Hqq682eqGhMmJExXPuZcuWhbkSIcTJ0HWdUqcXZ5gHNkfS2B4A509rOfj8TAAsXTJpPfFGTEnJDfoaVVtRWM312n9LVlkWodCQz+8Gd37uuusurrrqKi644ALOPfdckpKSOHjwIJ9++im7du1i/vz5Da9YCCEaUaQMbC4qdfPap5vZ9FtRteOh7vYcydrvFKK6dSeqWw/iRp2HotZ/9EPlVhR2a8P235Lui4g0DQ4/vXr1Yt68eTz55JPMnj27anpkz549mTt3bqNubSGEEA0VCGgUl3lw+wLHf3GQ6LrODxv2sWRZLm5veLs9mttNyeefEHfuBahmM4qqknLPXxscesxGA7Zo4wlvRRGMZQuEOFENDj9Lly5l8ODBLF68GJfLRWlpKbGxsURHRwejPiGEqDevr2JGly8QvoHNRSVuXvssMro97u3bODRvDv6DBWguF4lXXgNQ7+DTGKFHiEjU4PDz2GOPMX36dFJTU4mOjpbQI4SICC6PjxKHl0CYRjbrus736/fxzvLwd3t0v5/iD5dS8slHoOsYWrXC2qdfvd+vKGAyqEHddFSIcGpw+ElMTKS0tDQYtQghRIMFAhql5V7cHn+tM7qO3k28fUpMo481iaRuj3ffPg7NewHv7l0A2AafTqurx2Gw2o773srQY4s2EW0xhnQgthCh1ODwc/nll/PPf/6TVatWkZmZSevWNXfkveSSSxqjNiGEqJOu6zjdPhwuH4E6dmQ/cjfxgKZhUFVSEq2MGpxOdnqrRqmhtm6P1WLksnDM5PrlJw69+Dy6z4dqs5E4/jps/Y+/H6MCFYsSRhuxRtXcCFSI5qbB4eff//43AO+//36t5xVFkfAjhAgqf0CjxOHB4wvUOY29cjdxt8f/+4rDRvwBnbyDDhZ9nsM152SfVAA6VrfnmlHdiI+xnPDXPlGWjp1QTCYsWdm0njARY3zCMV9fGXqs0UZsEnpEC9Lg8CPr3wghwsnl8VHi9NbZ7YGKR12f/bgTt8dPvN1c9aFuNiqYbGaKnV4++3EnWR0SGvwI7FjdnstHZjEoxN0ez47tWDpX7KdobNWKNlOmYkxOOWYNCmCo7PRYTDLlXLQ4DQ4/jzzyCH/5y184/fTTg1GPEELUqnLRwnK377irNe/JLyO/sBxbdM1uhqIo2Cwm8gvL2ZNfRsc2sfWuoajEzaufbmbzzvB3ewIOB4WLFlK+ZhXJd96DtXdfAEwpqXW+pyL0KNiiTRJ6RIvW4PCzZs0aJkyYEIxahBCiVv6ARknZ74+56vF6R7mPgKZhNNT+K85oVCj3aDjKffW6fqR1e1y/buTQ/LkEiotBVfEXFBz3PQZDReizRUvoEaLB4WfIkCEsXryYvn37YrGE/pm2EKJl8Xj9FDu8+Buwdo/dasKgqvgDOmZjzQ96v1/HoFZM5T6eurs9rblmVHZIuz2ax8PhdxZTtvwLAIwpqSRNuglLp851vsegKtiiTFijTRgk9AgBnED4sVgsfPrpp3zxxRe0a9eOxMTEaucVRWHBggWNVqAQouVyuryUOn1oDdycq31KDCmJVvIOOjDZzDX2IXR6fKQl2WmfElPn1zhmt+esLAb1CPHYnp2/cWjeHHwH9gMQc+YIEsZegVrHP0INqoLVYsIWbcRgqP9qzkK0BA0OPwcOHKBfvz8Wyzp6X9QG7pMqhBA1nOympKqqMGpwOos+z6HY6cVmMWE0Kvj9FcEn2mxk1OD0Oh//RFK3p5K/sBDfgf0Y4uJpPWES0T171XiNQsX3bosyYY2S0CNEXRocfpryju1CiMgXCGgUOzx4vPUb31OX7PRWXHNOdtU6P+WeinV+0pLsda7zE2ndHt3vRzFW/Jq2ndqfwLhrsfUfiMFur/Y6BVB/H9Mjj7eEOL4Gh59K27dvZ/Xq1ZSVlZGQkMCpp55K5851P3cWQojjcXl8lDq9+I8xjb0hstNbkdUhoV4rPBeWuHj10xxyjur29O5S0e2Js4eu26PrOmXffEXJpx/T5sF/YIyLByB22PAarzVI6BGiwRocfnRdZ+rUqSxevLjaIy5FURg9ejTTp0+XhbKEEA2iaTpl5fWbxt5Qqqocczp7pHV7/MXFFL7yEq6NGwAo+2o5CZdcWuN1MpBZiBPX4PAzb9483nnnHe68804uuugikpKSKCgo4P333+f5558nMzNTpsILIerN5/9jteZQO1a35+pzQj+2x/nTGgpffQXN4QCjiYQxlxE74qxqr1EVhSiLgRirGaOM6RHihDQ4/CxZsoRJkyZxyy23VB1r164dt912Gz6fj8WLF0v4EULUS31Waw6GSOv2aOXlFL7xGs6VPwBg7tCR1hNvxJzWruo1qgJmkxG71YTFZAhZbUI0Rw0OP/v372fw4MG1nhs0aBAvv/zySRclhGjedF2nzOnD6fY2+mOu44mksT2VSj79qCL4KApx515A/EWXVA10VhSwGA0Vocd8wsM0hRBHaPD/ktLS0sjJyeG0006rcW7Tpk20anXyOyULIZovn1+j1FH/1Zobi67rfLcuj3e+2obnyG5PlJErzurKwO7H3g8rmOLOvwjP7l3EX3AxUZlZQEXoMRkqFmKMthx/MUYhRP01OPxccMEFzJw5k+TkZM4991xUVUXTND755BNmz57NlVdeGYw6hRDNgMvjo8ThJRDidk9Duj2aptdrdtjJ8O7ZTdm3X9PqqnEoqooaFUXqPX8FKqatm4wqtmgT0RajTCARIggaHH5uuOEG1q5dy3333cfkyZOJj4+nuLiYQCDAwIEDueuuu4JRpxCiCWvIpqSNfd2GdHtydhZVrQsU0CrWBUpJtNa5LlCD69E0Sj//lMNL34FAAFPbNGLPHFF13mBQsEeZsEbJ/ltCBFODw4/ZbGb+/Pl88803rF69mtLSUuLi4hgwYABDhw4NRo1CiCasoZuSNpZDxS5e+3QzObsOVzte19ienJ1FLPo8B7fHjy3ahNFgxB/QyTvoYNHnOVxzTvZJBSDfwYMcevlFPLlbAYjuewq2UwcAFTO4rFFG7NEmWZVZiBA44dFzQ4cOlbAjhDgmt9dPSQM3JT1ZJzK2R9N0PvtxJ26Pn3j7H3uBmY0KJpuZYqeXz37cSVaHhAZ3ZHRdx/HDdxS9sQjd40axRNHqqmuwDzkDVVWwmCqmrZtlBpcQIdPg8KNpGm+88QarVq2itLQUTav+S002NhVC6LqOo9yHw9XwTUlPRl3dnj6ZFev21DWTa09+GfmF5diiTTWCkaJUrKCcX1jOnvyyYy6YWJvDb79J6RefAWDJzKL19TdiTk7CbDRgizbKYGYhwqDB4efpp59m7ty5tGnThrS0tBq/KGRjUyFatoq9ubx4fP4T2pT0RJzsTC5HuY+ApmE01P4r0WhUKPdoOMp9Da7NNmgwZd8sJ/7CS4gbdS5mk1EGMwsRZg0OP++99x7XXHMN//jHP4JRjxCiCfP8/pjLF8LHXIeKXbz66Wa2NLDbcyS71YRBVfEHdMzGmoHE79cxqBXTzo9Hc7vwbNtWteu6Jb0T7R9/GnNcLPZoI9aomt0lIURoNTj8OBwOzj777GDUIoRowhzlXsrKQ/eYS9N1vvslj3e/2lZta4wTWbenfUoMKYlW8g46MNnM1d6n6zpOj4+0JDvtU2KO+XXcuVs59PKL+A8fpu2UqZjbd8CgKsQmt8IWLTO4hIgUDQ4/p556KuvWrWPQoEHBqEcI0cQEAholTi9ub+geczVGt+dIqqowanA6iz7PodjpxWYxYTQq+P0VwSfabGTU4PQ6w4vu91P8wXuUfPox6DqGVong9WKPNskMLiEiUL3Cz5o1a6r++6yzzuLf//435eXlnHLKKVit1hqvHzBgQONVKISIWG6vn9IQPuaqq9tj+73bM+AkVmnOTm/FNedkV63zU+6pWOcnLcl+zHV+vHl7OTRvDt49uwGwnz6ENn+5jvjWcTKDS4gIVa/wM378+Bpt4Dlz5gDUOK4oCps3b27kMoUQkSQcixY2drenNtnprcjqkFDvFZ5Ll39J0dtvgt+HareTcu31tBl6uszgEiLC1Sv8LFy4MNh1CCGaiFDvzVXV7fm6+kyuxuj21EZVlXpPZ9e9XvD7sPbqTfqtNxPfJlkGMwvRBNQr/AwcODDYdQghmgCXx0eJ00sgEJp2z6FiF69+spktu4/u9iRx9TldQ74Du67raE4nBrsdgIRR5xLbrg2pfx6CUcb1CNFknPAKz0KIliPUj7mCObbnRAUcDgpfewXv3r20e2ga1lgbsVYzhjPPCGkdQoiTJ+FHCHFMod6bK9K6PQCujf/j0Px5BEqKQVUx7f2NhEH9Q16HEKJxSPgRQtTJ4/VT7PDgD8FjLk3X+faXPN6rpdtz5dld6d8t9N0ezePh8JK3KPtqGQCWtm3peu+dxGRmhrQOIUTjkvAjhKhVKBctrKvb0zerotsTawt9t8ezYzsHX3oRf/4BAFLOO5dO143HYAl9LUKIxiXhRwhRjabplDg9uDzBX7QwErs9lYo/XIo//wCmhASy7r6D+L59wlKHEKLxNXh6wqxZs8jPz6/1XH5+PrNmzTrpooQQ4eHzaxSVuil3Bz/4HCp28ewbv/Dmf7dUCz59s5KYesNgBnRPDVvwMRgUOt1yE8kjR9Bv5tMSfIRoZho1/Bw4cEDCjxBNlMvjo7DUVS2IBIOm63z9814eeWlVtcdctigjEy/qwU2je4X8MZeu65R+tYzDby4iJtpMUryVhLRUMu+4FVPMsffzEkI0PQ1+7LVs2TKSkpJqPdetWzeWLVt20kUdzefzMWvWLN5//31KSkro1q0b//d//8cpp5wCwObNm5k+fTobN24kPj6e8ePHM3HixEavQ4jmSNd1ypw+nG5v0KexR+LYHn/xYQpfeQnXxv9VHBjxZwzdu4W8DiFE6DQ4/KSlpdV5zmw2H/P8iXr++ed55513+Pe//0379u2ZO3cuN9xwA5988glms5kJEyYwcuRIpk2bxrp165g2bRrx8fGMGTOm0WsRojkJBDSKHR483uBOY9d0nW9/3st7X2+vPrYn2sRVZ3fl1OzwrIxcvnY1h15dgOZ0oJrNdPzLOGKyu4a8DiFEaJ3wgOdvvvmGFStWUFBQwL333svmzZvp0aNHUMLPsmXLuOCCC/jTn/4EwAMPPMDixYtZt24dO3fuxGw28/DDD2M0GsnIyGDXrl3MnTtXwo8Qx+Dx+ikJwaakB4tdvPrJJrbuLq52vF9WEleFqdsTKHdS/MYiylb+AIAtozNZ99yFtX27kNcihAi9Bocfl8vFbbfdxooVK7Db7TidTiZNmsQbb7zBpk2beO2118hs5DUw4uPj+eqrrxg3bhxt2rThrbfewmw2061bN5YsWcKAAQMwGv/4VgYPHsycOXMoLCwkMTGxUWsRoqnTdR1HuQ+HK7jT2CO12wM6B596HPfOnaCqtBt7Ke0vH4tqks1IhWgpGjzg+amnnuLXX3/llVde4ccff0T//Zfn448/TkpKCs8++2yjFzllyhSMRiMjRoygV69ePP300zzzzDN06NCBAwcOkJqaWu31ycnJAOzbt6/RaxGiKfP4AhwqdlFW7g1q8DlY7OKZN37mzS+2Vgs+/bKSmDppUNimsBtUhTi7hfQrLycqNZVej/2LjtdcJcFHiBamwZ2fTz/9lHvvvZfBgwcTCPzxSy0pKYlbbrmFf/7zn41aIMD27duJjY1l9uzZpKSksHjxYiZPnsxrr72G2+3GbDZXe73l90XIPB5Po9ciRFPU0rs93t27UMsdJJ/WH5PRgP20QST0P0VCjxAtVIPDT2lpaZ3jeuLi4igvLz/poo6Ul5fHX//6V1555RX696/YS6dXr15s27aNmTNnEhUVhdfrrfaeytBjtVobtRYhmqKKQc1ePL7grt0TiWN7dE2j7PNPOLz0XQzWaNr0eAZaJQBI8BGiBWtw+MnMzOTDDz+sGnx8pOXLlzf6eJ8NGzbg8/no1atXteN9+vTh22+/pW3bthQUFFQ7V/nnlJSURq1FiKYmFIOaNV3nm5/38t7X2/D6/rhOuLs9gUMFHHp5Lq6tWwGI7d4dxdDgJ/1CiGaoweHnlltu4fbbb6e4uJgzzzwTRVFYs2YN7777Lm+++SZPPvlkoxbYpk0bALZs2ULv3r2rjm/dupWOHTvSt29f3nzzTQKBAAaDAYCVK1fSqVMnGewsWqxQPeY6WOxi4cebyN1TXO14OLs9oONa8T0HX38Nze3GEB1NpxuuJ3n4mWFbMVoIEVkUXW/4b8YPP/yQJ598kgMHDlQdS0xM5O677+ayyy5r1AI1TWP8+PEUFRUxdepUUlNTWbp0KS+++CKvv/467du359xzz2X48OFMmjSJDRs28PDDDzNt2jRGjx7d4OuNGDECICiLNQoRCj5/gBKHF68veGv31NXtsUebuDKM3R4VjUMvzKZ07VoAYrt3I/PuO4lKSQ55LUKI0GrI5/cJhZ9KO3bsoLi4mNjYWDp37oyqBqelXFJSwjPPPMPXX39NSUkJWVlZ3HvvvQwcOBCoeDQ2ffp0Nm3aRFJSEtdffz3jxo07oWtJ+BFNmcPlxVHuIxDEpZrr7PZ0TeKqs7OJtZlrf2MQqYqCNcqI3Wpm55wXyf9yOR2uuYq0iy9E+b0jLIRo3oIafv7yl78wdepUMjIyapzLycnhr3/9Kx9++GFDvmREkfAjmqJAQKPE6cXtDd6g5mN1e646pyunZod+jJ2igNHvw27UsLaueMwdcLtxH8jHlt4x5PUIIcKnIZ/f9Rrzs3bt2qr1fFavXs2aNWsoKiqq8bqvvvqKPXv2NKRWIcRJcv8+qNkfxEHNdXV7TumazJVndw15t0cBTEYVdm9n1+zniEpJoce0h1BUFUNUlAQfIcQx1Sv8LFmyhKVLl6IoCoqiMG3atBqvqQxHF1xwQeNWKISoU5nTG9RBzZqu881Pe3nvm9rH9vTvFvpuj0FViDYqHH7/XfLeXQq6DrqOt7AQSx2bLgshxJHqFX6mTJnCpZdeiq7rXHvttTz00EN06dKl2mtUVSU2NrbRp7oLIWoKxdo9Bw+Xs/CTzZHT7VEgymzEcOgAv82YifO3nQAkDz+TTjdcj1HW9RJC1FO9wk9MTEzV4OKFCxfSo0cPbDZbUAsTQtTO6fZRVu4lEAhet+frnyrG9vj8kdHtMRtVbFEGDv/3c3YtXITu92OMiaHLbTeTeNrgkNcjhGjaGrzOz8CBAzlw4ADffPNNtZWVNU3D5XKxdu1ann766UYtUghRMYW91OnF4wsErdtTcLichR9vZtve4mrHT8lO5qqzuxJjDW23x6AqWC0m7FYT+H3k/3cZut9Pwqmn0OWOWzEnJIS0HiFE83BCe3v99a9/xe/3V63joet61X937ty5cSsUooWrXLDQ6Q7eFPbKbs/SWsb2hGMml6ooREcZsUUZMaoKiqqA2UzWvXfhyN1GyjlnyYKFQogT1uDwM2fOHLp3787DDz/MokWL8Pv93HjjjXzzzTc8/fTTPPjgg8GoU4gWyeP1U+r04vNrQVuwMJK6PaoCFrMRe7QJxVXO9idnYu+SQbsxFQuW2jM6Y8+Qf2AJIU5Og8PPb7/9xhNPPEH37t057bTTmDdvHhkZGWRkZFBYWMgLL7zAkCFDglGrEC1GQNNxlHspd/sI1nqFdXV7YqyVqzSHrtujKGAxGrBbTVjMRg7//Au5M2bjO3yYwz/9TMpZIzDFxoasHiFE89bg8KOqKvHx8QCkp6ezY8cONE1DVVXOOOMM3n333cauUYgWxeXxUeb0BXUz0rq6PadmV8zkCmW3x2BQiLGasUWZCLjdbH/hZQ58+jkA0e3SyLrnLgk+QohG1eDw07lzZ3766ScGDBhAeno6Pp+PzZs306NHD0pLS6sNghZC1J/Pr1FWHvxVmr9au4el32yvMZMr1GN7VAWiLEZirWYMBpWyLVvZ+swM3Pv2A9DmgvPo+JdxGCzh2BxVCNGcNTj8XHnllUydOpXy8nLuvfdeBg0axIMPPsjYsWN57bXX6NGjRzDqFKLZCsWAZoisbo/JoBJrNxNlrvgV5CstY+ND09DcbsyJrci883bi+/YJWT1CiJalweHnsssuw+v1snfvXgAeeeQRbrjhBqZPn05aWhpTpkxp9CKFaK7cXj9lQR7QXFe3J1xje6KP6PZUMsXG0OHqK3Bs207GTTdgtNtDVpMQouVpcPhZsWIFo0ePxvr7aqrt27fn008/5fDhw7Rq1arRCxSiOfIHfn/E5fEHbUAzRFa3x6AqxNgqxvbous7+jz/FntmFmKyKVeHbXnRhxE5f1zSdHXkllDq9xNrMdE6LQ1Ujs1YhxPE1OPzcf//9TJ48mQsvvLDqmKIoEnyEqAdd13G6fDhcwX3EFWndniizkVibGaNBxVNYxLaZsyn+ZR1RbdvQ95knMVgsERt81uceZMnyXPIKHPgDGkaDSlqynbHDM+mTKXuJCdEUNTj8mM1mLDIAUYgGC8WaPVDZ7dnEtr0l1Y6Ho9tjNKjEWE1Yo0wAHPr+B7Y//yJ+hwPVbKbN+eehmkwhq6eh1uceZPaS9bjcfmJsJkwGE76Axs79pcxesp7bxvaRACREE9Tg8HPTTTfx0EMPkZOTQ2ZmJq1bt67xmgEDBjRKcUI0B6F6xHWsbs9VZ2dzSnZy8C5+FIOqYIsyYY02YVAV/A4nO16cx8FvvgXAlpFB1r13Ym3XLmQ1NZSm6SxZnovL7Scx7o/OlEU1YI5VKSz1sGR5Lr0yWssjMCGamAaHn6lTpwLw3HPPAVRrVVduc7F58+ZGKk+IpkvTKh5xBXsWF0B+UTmvflKz29O/WzJXnBW6bk/lgOYYa8UjLgDPwUNsmPwg3sJCUFXajb2U9ldchmps8K+fkNqRV0JegYMYm6nGIzlFUYiJNpFX4GBHXgld2seHp0ghxAlp8G+fhQsXBqMOIZoNXdcpd/twuvz4A8F9xBVJ3R6TQSXGZiLaUv0xlrl1ItYO7VHNJrLuuYuYrlkhq+lklDq9+AMaJkPtj+VMRhWHy0epU9Y2E6KpOaFd3YUQtXN5fDjKK1ZnDtZChZXq7vakcOVZWdhD1O2p3IQ0xmrG8PvjH8eO34hKTcVojUZRFLLuuRPVYsEQFRWSmhpD5QBtX0DDohpqnPf5KwY/x9pCu9O9EOLkRXbfWYgmwufXKHV68fiCtzpzpWN1e64+J5t+XUPT7anaj8tmxmKqCAd6IEDee++z+423SBo2lMw7bgXAFBcXkpoaU+e0ONKS7ezcX4o5Vq3xiL/M5SO9TSyd05re9yZESyfhR4iTEMpxPXDssT1XntU1ZN2eI/fjquTaf4DcZ2ZQlrMFgIDTgeb3R/zYnrqoqsLY4ZnMXrKewlIPMdEmTEa1YhsSlw+rxcjY4Zky2FmIJqhp/lYSJ0wWa2scuq5T7vHjLPcFfVwPVPy9LV+7h/e/DX+358g1e6DiXuR/8SW/vfQKmtuNITqazjdOIunMoRG7dk999clM4raxfarW+XG4fBgNKultYmWdHyGaMAk/LYgs1tY43F4/jnIfXn8g6I+4oKLbs/CTTWwP89ie2ro93uISts2azeE1PwEQ27MHmXfdTlRy6AZaB1ufzCR6ZbSWfzQI0Yyox39JdX/729/Ys2dPred27NjBzTfffNJFicZXuVjbzn2lRFkMJMRYiLIYqhZrW597MNwlRjyP109hiYuiUjceX/CDj6bpfLl6N/96eVW14BNjNXHT6F5MurhnSIJP5fT11nHR1YJPJcfWXBSjkfQJ19LzkYebVfCppKoKXdrHc0p2Ml3ax0vwEaKJq1fnZ9++fVX/vXTpUkaOHInBUHP2w7fffsuKFSsarzrRKGSxtpMTqkUKjxTJ3Z6Ax4Ph91XezfFxZN13D6a4OGzpHUNSkxBCnKx6hZ9//vOffPPNN1V/vv3222t9na7rDBkypHEqE42mKS/WFs4xSqHah+tIkTK2R1Ugqpbd10t+3UTuMzNJv3Ycrf9U8b/1+D69Q1KTEEI0lnqFn2nTprFixQp0XefBBx/klltuoUOHDtVeo6oqsbGxDBo0KCiFihPXVBdrC+cYJY/XT1kIx/VARbdnwceb2JEX3m6P2agSYzMTZf7j14Pm87H79TfJe+990HX2vvs+iUNOb/IDmoUQLVO9wk9KSgqjR48GKjoFgwcPpk2bNkEtTDSeprhYW7g2lAxoOmXlXlxuX8gecUVKt0dRwBplqrZYIYBz5y62Pv0s5Tt3AZA8cjidJk6Q4COEaLIaPNvr3//+N9OnT5fw04Q0tcXawjFGSdMqtqRwuH0EAiFKPdTd7RnQPYUrzuqKPTo0O54bDApxNnO1rSl0TWPfBx+x69VF6H4/xthYutx2M4mDpbsrhGjaGhx+EhMTKS0tDUYtIkia2mJtoRyjpOs6zt/34QqEYL2eSnV1e2JtZq46u2tY1+2pVLZlKzvnLwAgYcCpdLn9Vszx8SGpSwghgqnB4efyyy/nn//8J6tWrSIzM5PWrVvXeM0ll1zSGLWJRtSUFmsLxRilykUKy10+fP7QhR6IoG6PqhBjNWGLrv1xZ2y3bNIuvYSoNm1IOWuEPOYSQjQbJ/TYC+D999+v9byiKBJ+IlRTWaztRMco1XdmWMWO66HZfPTo+urq9lx9TjZ9s0ITQBUFLCYDsTYLJuMf3R5faSm/vbyAjtdciSWpopb0a8eHpCYhhAilBoefZcuWBaMOESKVi7VFshMZo1SfmWGhXpn5SAcKnSz8ZHNEdHvsVhP2o7o9h3/6mdyZs/EdLsZ3+DA9pj0UknqEECIcGhx+0tLSjnleD/Wnimh2GjpGqa6ZYXsKynj1082gQLske0hWZT6apuksW7ObD77bEfaxPbV1ewJuNzvnL+DAZ/8FILp9Ozr+ZVxIahJCiHA5ob29Pv74Y1avXo3P56sKO7quU15ezrp16/j2228btUjR8tR3jFJtM8OMBpU4uxmTsWJm2DvLc7nh4l4hf7wXad0eW1T1AeRlW7ay9elnce8/AECbCy+g4/irq1ZvFkKI5qrB4WfWrFnMmjWLmJgY/H4/JpMJo9FIUVERqqpy2WWXBaNO0QLVZ4zSkTPDTEYD1igDRqMBv1+juMyDs9xHUYmbPflldGwTG5K6j9XtCenYHn7v9tjNmIzVx04d/vkXNj3yKGga5sREMu+6XVZqFkK0GA0OP++99x4XXXQR/+///T9mzJjBvn37+H//7/+xceNGbrzxRjIzM4NRp2ihjjdGqdTpRUenVYwFi8WI1xfgcKkbjzcAgNGoUO7RcJT7QlJvXd2egT1SuXxkVsi6PYoCtigTsTZzrbO04nr2wNouDVunTnS+cRJGuy0kdQkhRCRocPjJz8/n4osvRlEUevTowccffwxAz549ufnmm1m8eDHjxsmYAREaCTEWkhOsBHSd4lI37t9DTyW/X8egqtitwQ0dkdLtgdqnsOuaxqHvV9B6yGkoBgOq2Uyvf0/HaJPQI4RoeRocfqxWa9W/JNPT09m7dy9ut5uoqCi6devG3r17G71IIWrj8fqxW02YTSrb80qIP6rLoes6To+PtCQ77VNiglZHpHR7oGJfrli7BYvpj8dcnsJCts2YTfG69XgKCmg39lIACT5CiBarweGnV69evPfee5x++ul06NABg8HAihUrGD58ONu3b8dsjpz9oUTz5PNrOFxe3B4/mg7DTmlP3kEnxU4vNosJo1HB768IPtFmI6MGpwdlsLOm6Xy5ZjcfRkC3RwEsZiPx9uq7sB/87ge2Pz+HgNOJajZjkMAjhBANDz8333wzEyZMoKysjBdeeIGLLrqIBx54gEGDBvH9998zcuTIRi1w1apV/OUvf6n1XLt27Vi2bBmbN29m+vTpbNy4kfj4eMaPH8/EiRMbtQ4Rfrqu43T5cLh8BI7YdTQ7vRXXnJPNZz/uJL+wnHKPhkFVSUuyM2pwOtnprRq9lgOFThZ8vInf9lXf6mVgj1SuGJmFLYTdHlUBe7QZu/WP2Vx+h4Ptc+Zy6NvvAbBndiHz7juxtjv2UhVCCNESNDj8DBgwgCVLlrBlyxYAHnroIVRV5eeff2bUqFE88MADjVpgv379+P7776sd27p1KzfeeCM333wzhw8fZsKECYwcOZJp06axbt06pk2bRnx8PGPGjGnUWkT4eHwBypzeOhcozE5vRVaHBPbkl+Eo92G3mmifEtPoHZ/Kbs8H3+7AHwhvtwcqxvfE2atvSFq6OYct/3kSb2ERqCrtLx9Lu8vGoBpPaGULIYRodk7ot2F2djbZ2dkAWCwWHnnkkUYt6khms5mkpD8+UHw+H4899hhnn302l112GXPmzMFsNvPwww9jNBrJyMhg165dzJ07V8JPM+D1BXC6fbg9AbTjrFCoqkpQp7NHUrcHKsb3xMdYakxjN9qs+ErLiGrbhqx77iImS2ZgCiHEkU4o/Hi9XpYsWcKKFSs4ePAgjz76KKtXr6ZHjx707h3ctUIWLVrE/v37efnllwFYu3YtAwYMwHjEv2oHDx7MnDlzKCwsJDExMaj1iOA4elxPOEVat0dRINpiJNZmwfB7Z8tbXII5vmK7D2uHDnR/aAoxWZkYoqJCWpsQQjQF6vFfUl1RURFjxoxh+vTp7Nq1iw0bNuB2u/n6668ZP348v/zySzDqBMDj8fDCCy9w7bXXkpxcsS3AgQMHSE1Nrfa6ynP79u0LWi0iODRNp8zppbDERbk7/MHnQKGT/7y2lne/2lYt+AzskcrUSYPD8pgr1mYmISYKg6qgBwLseXsJP91wM2Vbtla9Lr53Lwk+QghRhwZ3fh5//HGcTieffPIJaWlp9OzZE4AZM2YwceJEZsyYwfz58xu9UKjYSd7j8TB+/B87Tbvd7hozzCy/L8/v8XiCUocIDpfHh6Pch8+vEe4d4o7V7blmVHbV9hqhdPQ0dtf+/eQ+PaMq9BxasZKYrlkhr0sIIZqaBoefr776igcffJCOHTsSCPyxoJzFYuH6669v9AHPR1q6dClnn302CQkJVceioqLwer3VXlcZeqxWa9BqEY0nnLut16ausT2Dfl+3J9Rje45+zKXrOvmff8FvL7+C5vFgsFrpfNMkkob+OaR1CSFEU9Xg8OPxeIiPj6/1nMFgwOcLzjYCRUVF/PLLL9x0003VjqemplJQUFDtWOWfU1JSglKLaBweXwBHuQ+Pzx8RoScSuz0GVSHGZsYWVRG4vIcPs23mcxz+6WcA4nr1JPOu27Ekhb42IYRoqk5okcPXX3+doUOH1jj34YcfVj0Ga2w///wziqIwcODAascHDBjAm2++SSAQwGCoeBywcuVKOnXqJIOdI5TPH8Dh8kXEYOZKJ9Lt0TQ9aFPrFcBsMvy+O/0fs7mKVq/h8E8/o5hMdBx/DW0vPB9FbfDQPSGEaNEaHH7uuusurrvuOi6++GKGDh2Koih89NFHzJw5k++//5558+YFo05ycnJo37490dHR1Y6PGTOGefPmMWXKFCZNmsSGDRtYsGAB06ZNC0odTZmm6cfcIT3YfH4Np9uHy+0/7rT1UDlWt2fcqGx619HtydlZVLWoYkCrWFQxJdHaKIsqqgrYoszE2Ew1NiVNOfssXHvzSB45AlvHDid1HSGEaKkUXW/4p9CaNWt48skn2bBhA5qmoSgK3bt3595772XIkCHBqJOHH36YzZs389Zbb9U4t2HDBqZPn86mTZtISkri+uuvP+HNVUeMGAHAsmXLTqreSLM+9yBLlueSV+DAH9AwGlTSku2MHZ4Z9Mc5AU3HUe7F5fFXW5k53E50bE/OziIWfZ6D2+PHFm3CaFDwB3Scbh9RZiPXnJN9wgHIZFCJs5uxmCv+XVKy8Vd2v/EW3aY8gFHGsAkhRJ0a8vl9QuGnktvtpqSkBLvdjq2Z7BnUHMPP+tyDzF6yHpfbT4zNhMmg4gtolJX7iLYYuW1sn6AFIKfbh6Pciz8QOaHnZMb2aJrOjLd/Ia/AQby95kaqxU4vaUl27ry8X4O6aooCUWYjcbaKvbk0n4/di94gb+kHoOukXXoJ6deOP/4XEkKIFqohn98nvN690+mkrKwMTdMoKSmhpOSPHa3btm17ol9WNDJN01myPBeX209inKXqw9qiGjDHqhSWeliyPJdeGa0b9RGY1xegrNyLxxcZM7gq7T/kZOEnJz6Ta09+GfmF5diiaz6SUhQFm8VEfmE5e/LL6r3atEFVsFtN2KMrlmxw7tzJ1qeepXzXbgCSR46g3WVj6/stCiGEOI4Gh5/du3dz77338uuvv9b5ms2bN59UUaLx7MgrIa/AUev4EUVRiIk2kVfgYEdeCV3ax5/09SofcZVH0LgeqAiBX6yu2IH9yG5PnN3MNefUPbbnaI5yHwFNw2io/X86RqNCuUfDUV6/WY8mg0pcTMXaPXogQN77H7J70Rvofj+muFgybruVxEED6vW1hBBC1E+Dw8+0adPYvXs3N910E+3bt0eVmSYRrdTpxR/QMBlq72iYjCoOl49Sp7fW8/Wl6zrlbh9lLh+BCHrEBXV3ewb3TOWykVlV08jrw241YVBV/AEds7Fmp8zv1zGoKnbrsb+mAlhMBuJiLBgNFf8b2v3m2+x9ewkArQYOIOO2W6q2rBBCCNF4Ghx+fv75Z6ZOncoll1wShHJEY4u1mTH+PsbHohpqnPf5KwY/x9rMtby7fqpWZg5oEfWIK6BpfLl6Nx9+99tJdXuO1D4lhpREK3kHHZhsNcf8OD0+0pLstE+JqfNrqApER5mIO+r9bc4/j0Pffk+7yy4lecTwGp06IYQQjaPB4cdms1XbZV1Ets5pcaQl29m5vxRzrFrjw7rM5SO9TSyd0xrWYdB1HbfXT7nLjydCVmY+0r5DDhZ+vJmd+0++23MkVVUYNTidRZ/nUOz0YrOYMBoV/P6K4BNtNjJqcHqd46dMBpVYu5kosxFfSQkHv/2etheeD4A5Po5TnpuBYqgZUoUQQjSeBoefiy++mIULFzJ48OCqRQVF5FJVhbHDM5m9ZD2FpR5iok2YjCo+v0aZy4fVYmTs8Mx6D3b2BzRcbj/lHh8BTY+40PNHt2dHtRlmJ9PtOVp2eiuuOSe7ap2fck/FOj9pSfY61/lRFLBGmYixmjGoCkVr1rJt1vP4iosxxceTdEbFEhESfIQQIvjqFX7+9re/Vf233+/nu+++46yzzqJ37941Fh1UFIVHH320casUJ6VPZhK3je1Ttc6Pw+XDaFBJbxNb73V+fP4ATrcfl8ePFkFr9RwpWN2e2mSntyKrQ0K9Vniu3IndGmUi4HKxbf4C8j//AgBrh/ZEp8nsSCGECKV6hZ9Vq1ZV+3NqaipQsbjg0WScQmTqk5lEr4zWDV7h2eMLUO724fYEImr21pGO2e0Z1Y3eXVoH5bqqqhxzOvsfW1RYMBlVSjfnkPvMTNwHDoCi0PaiC+g47mpU84mPtxJCCNFw9Qo/y5cvD3YdIgRUVan3dHaP14/D5cfri5z9t2pTd7enDZeNzGzUbk9DVD7mqhzUnPf+B+x85VXQNMytW5N51+3E9+4VltqEEKKlO+FFDkXzVBF6fHh9gYgOPeHq9tSHQVWIsZqwRf/R0bF26ACaRtKwoXS+YSJGe/NYEV0IIZoiCT8CqAg9TrcfjzeyOz0Q2rE9DVW5N5fZqFK+Zy/W9u0ASOjXlz5PP4G9c6ew1SaEEKKChJ8WTNd1XB4/5W4/3gicrn60gKbxxardfPT90d0eC9eMyg5rt0dRINpiJNZmwV9UxK/PzsSRu42+zz5FVEoygAQfIYSIEBJ+WqCApuPy+HC5/RG3MGFd9h1ysODjzeyKsLE9AEZDxWyuaIuJg99+x/YX5hJwOlHNZpw7d1aFHyGEEJFBwk8LEgholLv9OD0+tIBOE8g8Ed3tgYotKuJjLOjlTrbMmMmh738AwJ6ZSdY9d8o0diGEiEASflqAQEDD4fLh8vgJRPqAniPsO+hgwSc1uz2n9WrD2BHh7fYoCkSZjcTbLZSsX8+2GbPxFhWBqtL+istof9kYWbBQCCEilISfFsDjC+B0+5rE4y04drdn3KhseoW526MqYIsyE2MzoSgKxevW4y0qIjqtLZn33EVMZpew1ieEEOLYJPy0FE0k+ERytwfAYFCIs5mJMv6xT1rHa67CaLPR9uILMVgsYa1PCCHE8Un4EREh0rs9CmAxG4iNNrL/3fco2fA/ej7yMIrBgGo20/7ysWGtTwghRP1J+BFhd6xuz2UjMrGGudujKgr2aBOGwwfZ9K+ZOLbmAlC4ajWtTz8trLUJIYRoOAk/ImwCmsZ/f9zNxz/U0u05N5teGeHt9gCYjSoxNjOHl33JzvkL0TweDDYrGTfdSOJpg8NdnhBCiBMg4UeERd5BBws+3sTuA2XVjkdKt6dyb64ot5Md/36Kwz/9AkBc715k3nk7lqTwBzMhhBAnRsKPCKm6uj3xMRXr9kRCt0dRwB5lJtZu5tf//D+K161HMZlIv3Ycbc4/D0VVw12iEEKIkyDhR4RM3kEHCz/exK6juj2n/z6TK9zdHqiYxh5jM2P/fVPSThMnsG3283S57RasHdqHuTohhBCNQcKPCLpjdXvGjcqmZwR0e6BiN3Z1Vy6leXuxX3gBANYO7en17+lV09qFEEI0fRJ+RFDVNbbn9N5tGDs8Mro9AKrmw/H+UvI/+hgUhZiuXYnJygSQ4COEEM2MhB8RFAFN4/Mfd/Hx979V21Ij0ro9AFreHvJfmoNr9x4AUs4agbV9uzBXJYQQIlgk/IhGl1fgYMEnkd/tQddwfvk5h95Zgu73Y4qLo8sdt9JqQP9wVyaEECKIJPyIRhMIaHy+qml0exTg0KxnKFu/HoBWgwbS5babMcXFhbcwIYQQQSfhRzSKvILfx/bk1+z2XDY8i+ioyPlRMxlU4uxm1NMHU751K51uuJ7k4WfK2B4hhGghIucTSTRJdXV7EmIsjDu3Gz06J4axuuq0slKM5aUkdsvCYFBJOecsEgb0x5LYKtylCSGECCEJP+KEnWi3R9N09uSX4Sj3YbeaaJ8Sg6oGt+viXv8LhxbOx2Axk/TsU2C1oiiKBB8hhGiBJPyIBjtWt+ea44ztydlZxGc/7iS/sJyApmFQVVISrYwanE52euMHEc3tovjtNyn99msAzB074CspxWi1Nvq1hBBCNA0SfkSD1NXtGdK7LWOHZx5zbE/OziIWfZ6D2+PHFm3CaDDiD+jkHXSw6PMcrjknu1EDkCd3K4defhHfwYOgKLS9+EI6XnMVqtncaNcQQgjR9Ej4EfVysmN7NE3nsx934vb4ibebqwYXm40KJpuZYqeXz37cSVaHhJN+BKZrGsVL36Hk049B17EktSbz7juJ69njpL6uEEKI5kHCjziuvQVlLPx4c81uT5+2jD3z2N2eSnvyy8gvLMcWbaoxq0pRFGwWE/mF5ezJL6Njm9iTqldVFfSD+aDrJA8fRqdJ12O02U7qawohhGg+JPyIOgUCGp/9uItPfjj5mVyOch8BTcNoqP1HzmhUKPdoOMp9J1SrrmnoPh+m6Cji7BaS7riF0s1nkjh40Al9PSGEEM2XhB9Rq8bo9hzJbjVhUFX8AR2zseZjLb9fx6Cq2K0NX/3ZX1jIofnzMMbFkv1/92AxG8ESJ8FHCCFErST8iGoas9tzpPYpMaQkWsk76MBkM1d79KXrOk6Pj7QkO+1TYur9NXVdx/njCgpffw3dVY5qsaAXHYLU1BOqUQghRMsg4UdUaexuz5FUVWHU4HQWfZ5DsdOLzWLCaFTw+yuCT7TZyKjB6fUe7BxwOCh87RXK164BwJaVSdd77iRKgo8QQojjkPAjgtbtOVp2eiuuOSe7ap2fck/FOj9pSfYGrfNTvnEDhfNfIlBSDAYD7S6/jA6XXYpiMDRKnUIIIZq3JhN+li5dyosvvsiePXvo0KEDt99+O+eeey4AmzdvZvr06WzcuJH4+HjGjx/PxIkTw1xx07C3oIwFH29mTxC6PbXJTm9FVoeEE17hWfN5KVwwn0BJMeY2bel6313EZnZp1BqFEEI0b00i/Lz//vs8+OCDTJ48mWHDhvHRRx9x7733kpqaSnp6OhMmTGDkyJFMmzaNdevWMW3aNOLj4xkzZky4S49YgYDGZyt38smKndW7PbEWxp/bje6dgrcnl6oqJzydXTWZSbp+Et7/rSNz4rUYo6IauTohhBDNXcSHH13XefbZZ7n22mu59tprAbjtttv4+eefWb16NatXr8ZsNvPwww9jNBrJyMhg165dzJ07V8JPHfbml7Hg403sKXBUO/6nPm0ZE4Ruz8nQ/X6KP/4QU1IS9tP/hKooJJ/aj5g/y0wuIYQQJyZyPuXqsGPHDvLy8rjwwgurHX/ppZcAuOGGGxgwYABG4x/fyuDBg5kzZw6FhYUkJkbOruLhVtnt+XjFTrQQd3tOhO/Afg7Om4N3528oUVHE9u1DqzZJFVPZhRBCiBMU8Z8iO3fuBKC8vJyJEyeyadMm2rVrxy233MLw4cM5cOAAWVlZ1d6TnJwMwL59+yT8/G5PHd2eM/q25dIzM4m2RM6Pgq7rlH21jMNL3kL3elGtVtpOuJ7k9qkYgrz7uxBCiOYvcj7x6uBwVHxYT548mdtvv53/+7//4/PPP+fWW29l/vz5uN1uzEdtVGmxWADweDwhrzfS+AMaS5bn8s5X25pEt8dffJhD81/C/ev/AIju3oNOt91CQrs2Ya5MCCFEcxHx4cdkqljxd+LEiYwePRqAbt26sWnTJubPn09UVBRer7faeypDj9VqDW2xEabc7ePvL6wgd09xteN/6tOWMcMjq9sDECh3su/hf6A5ylBMJlpffiUdLj6fKEvDV30WQggh6hJZn361SP190bqjH2116dKFr7/+mrS0NAoKCqqdq/xzSkpKaIqMUCs27K8WfCK121PJYLVhH3IG7pxNpN18CyldO2MwqOEuK2g0TWdHXgmlTi+xNjOd0+JOekd7IYQQxxfx4ad79+7YbDbWr19P//79q45v3bqVDh06cMopp/Dmm28SCAQw/L7I3cqVK+nUqVOLH++TnZ5AlNmA2xuI2G6Pa/MmjK1aYUqpCLmtRo8hOuoK4uNszToIrM89yJLlueQVOPAHNIwGlbRkO2OHZ9InMync5QkhRLMWWZ+EtYiKimLSpEnMnj2blJQUevfuzccff8wPP/zAK6+8QpcuXZg3bx5Tpkxh0qRJbNiwgQULFjBt2rRwlx527ZJjWDD1HIrLKh4D6sd5fShpPi/F7y6h9IvPMXfOoM3kKahGA7aYaGKP2vuruVmfe5DZS9bjcvuJsZkwGUz4Aho795cye8l6bhvbRwKQEEIEUcSHH4Bbb72V6Ohonn76afLz88nIyGDmzJkMGlSx1su8efOYPn06o0ePJikpifvvv79qfFBLZ42qGC9TGYAigWf3Lg7NewHfvn0AmNt3AC1ATHQ0MTbzcd7dtGmazpLlubjcfhLjLFUhz6IaMMeqFJZ6WLI8l14ZrZt150sIIcKpSYQfgAkTJjBhwoRaz/Xu3Zu33norxBWJhtI1jZLPPqb4/fcgEECNjaP1dddj69OXmGhzsw8+ADvySsgrcBBjM9XobimKQky0ibwCBzvySujSPj48RQohRDPXZMKPaNoCpaUUzH4Wz/ZtAFhP6U/i+Oswxsa0mOADUOr04g9omAy1z2AzGVUcLh+lTm+t54UQQpw8CT8iJFSrFd3vR4mKIvHq8dhOG4JBVYixmrFbW0bwAYi1mTEaVHwBDYtacxd6n79i8HNsCwmDQggRDhJ+RNAESktRrVYUoxHFaCTpxltQjEaMia1RFYixmbFH1/yQb85TwDunxZGWbGfn/lLMsWq1R1+6rlPm8pHeJpbOaXFhrFIIIZo3CT8iKJy//EThwvnE/HkYCaPHAlRNZ1cVhVi7GVtUzUc/zX0KuKoqjB2eyewl6yks9RATbcJkVPH5NcpcPqwWI2OHZzabsCeEEJGo+a4gJ9A0nW17isnZWcTuA2XVtrcI2jVdLg698hIHZ89AKyvD9b8N6H5/1XmDqhB3jOAze8l6du4rJcpiICHGQpTFUDUFfH3uwaDXHwp9MpO4bWwf0tvE4vYGOFzmwe0NkN4mlltlmrsQQgSddH6aqcoOyr6DDlrFWjhc5iUh1sKowelkp7cKyjXdW7dw6OUX8R86BIpC7DnnknDxpSjGih8zs1El1m7BYqo51qWlTQHvk5lEr4zWzfbxnhBCRDIJP83QkYvoxdpNxFjNlHv85B10sOjzHK45J7tRA5Du83H4/fco/fwT0HWMrVvT+vobiMrKBkABLGYD8XZLndtVtMQp4KqqNJvvRQghmhIJP83M0R0UVVVQVAWzUSXeZqbY6eWzH3eS1SGh0boM/uLDlH31Jeg69iFn0OrKa1CjowFQFLBFmY67arNMARdCCBEqEn6ameN1UGwWE/mF5ezJL6Njm9gTvo6u61Vf35SUTOK4a1GiorD1O7XqNaqiEGMz1Tqj62gyBVwIIUSoyIDnZuaPDkrtf7VGo0JA03CU+074Gv7CQ+Q/+TiunM1Vx+ynDakWfAyqQkKspV7BB/6YAl5W7kPXqw/MrpwCnpZslyngQgghTpqEn2bmyA5Kbfx+HYOqYrfW/njpWHRdx7Hie/Ie/jvunE0Uvb4QXat5HZNBpVVsFFHm+jcWK6eAR1uMFJZ68HgDaJqOxxugsNQjU8CFEEI0Gnns1cwcbxE9p8dHWpKd9ikxDfq6gbIyCl97hfKf1gJgyehC64k3oqjV87PZqBIfE4XJ2PBcXTkFvHKdH4fLh9Ggkt4mttms8yOEECL8JPw0M0cvohdrNaFrOl6fRrHTS7TZyKjB6Q3qoJT/bz2Fr7xEoKQEDAbiLxpN3KjzUAzVx+ZEmQzEx9Q9o6s+ZAq4EEKIYJPw0wwd2UHZd9BBWbkXj08jLcne4HV+3Nu3UfDsUwCY2rSl9aSbsHRMr/YaRYFoi5E4m6VRQopMARdCCBFMEn6aqeodFA9en0Zasr3B4cTSOQPrqQMwJiQQf+llqObqA5hVRcEebWoxu7ILIYRo+iT8NGOVHZRyt4/iMg/12dxC9/sp+e9nxPx5GAa7HUVRSLrp1hpje+CPrSqiLQ0fPC2EEEKEi4QfUcW7fx+H5s3Bu2sn3t07SbrpNhRFqT34GBQS7BYsDZjRJYQQQkQC+eQS6JpG2dfLOLz4LXSfD9VqxXpK/zpXZDYZVOJjLJhr2aNLCCGEiHQSflo4/+EiDs2fh3vTrwBEde9B6wmTMCbUPij6ZKayCyGEEJFAwk8L5s7dSsHMZ9DKnSgmEwmXXUHMsBG1Puaq2pw0JgqDTDsXQgjRhEn4acFMbdNQLBbMycm0nngj5jZta32dooA1ykTccTYnFUIIIZoCCT8tjGf3LsztO6AoCgabjdT/m4wxsTWKsfYfBUUBe5SZWLtMZRdCCNE8yMCNFkLzeil8cxH7//kQjh++qzpuSkk9ZvCJiZbgI4QQonmRzk8LUL5jB/tmzMK3fx9A1f8/lsrgI4sXCiGEaG4k/DRjeiDA3nfeY/ebb0MggCEujsTrJmLt1eeY71MViLGasVsl+AghhGh+JPw0U679+8l9egZlW7YCYD21P4njrsMQc+zd3FWlYtVma5Ss2iyEEKJ5kvDTTHmLDlO2NReD1Uq7Cdeh9B1Y8SzrGAyqQnyMhShZtVkIIUQzJp9yzYjm96P+Png5rkd3utx+C3G9e6HFJhx3by+TQSUuxoJFVm0WQgjRzMlsr2aicOUqfr75Nlx5fwxmThk5gqjk5GO+TwGizAYS46Ik+AghhGgRJPw0cf7ycnKfnUXOvx/Hc/AQe5e8W+/3qgrYok20io3CYJAfBSGEEC2DPPZqwkp+/ZXcZ2biKTgIikLa6IvpcPWV9XqvQa0Y2BxtkYHNQgghWhYJP02Q5vOxe9Eb5C39AHQdS3IymXffQVyP7sd9rwJYTAZi7RbZnFQIIUSLJOGnCTrw+Rfkvfc+AMkjR9Bp4gSM1ujjvk/26BJCCCEk/DRJqaPOpviXdaScPZLEQQPr9R5VVbBHm2ThQiGEEC2ePPdoAtz5BWx/fg6azweAajTS/R8P1jv4KArE2WXFZiGEEAKk8xPRdF3n4Fdfs+PFlwi4XBhjY+l4zVUN/joyqFkIIYT4g4SfCOUrLWX7cy9QuHIVADHZXUkefmaYqxJCCCGaPgk/Eaho7U9sm/kcvuJiFIOBDldfSdroi1EMsgihEEIIcbIk/ESYfR98xG8vzQcgun07su69C3vnzmGuSgghhGg+ZMBzhGk1sD+G6GjaXnQBfZ/6jwQfIYQQopFJ5yfMNL+fkvUbSDj1FACiUlM55YXZmOPjwlyZEEII0Tw1ic5PXl4eXbt2rfF/ixcvBmDz5s2MGzeOvn37MmzYMF566aUwV1w/5Xv2suH+B9n0z+kUr99QdVyCjxBCCBE8TaLzs2XLFiwWC19++WW1lYljYmI4fPgwEyZMYOTIkUybNo1169Yxbdo04uPjGTNmTBirrpuuaez/+FN2LXwNzevFaLejeTzhLksIIYRoEZpE+Nm6dSudOnUiOTm5xrkFCxZgNpt5+OGHMRqNZGRksGvXLubOnRuR4cdzqJDcGbMo+b3TE9+vL13uuA1LYqswVyaEEEK0DE0i/GzZsoUuXbrUem7t2rUMGDAAo/GPb2Xw4MHMmTOHwsJCEhMTQ1XmcR1asZJts54n4HSims2kT7iW1HPPkX22hBBCiBBqEmN+tm7dSmFhIVdffTWnn346V111Fd999x0ABw4cIDU1tdrrKztE+/btC3mtx6J5vQScTuyZXejz9BO0OW+UBB8hhBAixCK+8+P1etm5cyfR0dHcf//9WK1WPvjgA2644Qbmz5+P2+3GbK6+Z5XFYgHAE2HjaJKG/hnVaKTV4EGoxoi/9UIIIUSzFPGfwGazmTVr1mA0GqtCTs+ePdm+fTsvvfQSUVFReL3eau+pDD1WqzXk9R6Loii0/tOQcJchhBBCtGhN4rGX1Wqt0d3JysoiPz+f1NRUCgoKqp2r/HNKSkrIahRCCCFE0xDx4ScnJ4d+/fqxdu3aasc3btxIly5dGDBgAD/99BOBQKDq3MqVK+nUqVNEDXYWQgghRGSI+PCTlZVFZmYm06ZNY+3atWzfvp3HHnuMdevWcfPNNzNmzBgcDgdTpkxh27ZtvPvuuyxYsICbbrop3KULIYQQIgJF/JgfVVV54YUXeOKJJ7j77rspLS2le/fuzJ8/n65duwIwb948pk+fzujRo0lKSuL+++9n9OjRYa5cCCGEEJFI0XVdD3cRkWTEiBEALFu2LMyVCCGEEKK+GvL5HfGPvYQQQgghGpOEHyGEEEK0KBJ+hBBCCNGiRPyAZxFemqazI6+EUqeXWJuZzmlxqKpsySGEEKLpkvAj6rQ+9yBLlueSV+DAH9AwGlTSku2MHZ5Jn8ykcJcnhBBCnBB57CVqtT73ILOXrGfnvlKiLAYSYixEWQzs3F/K7CXrWZ97MNwlCiGEECdEwo+oQdN0lizPxeX2kxhnwWIyoKoKFpOBxFgLLo+fJctz0TRZJUEIIUTTI+FH1LAjr4S8AgcxNhOKUn18j6IoxESbyCtwsCOvJEwVCiGEECdOwo+oodTpxR/QMBlq//EwGVX8AY1SpzfElQkhhBAnT8KPqCHWZsZoUPEFtFrP+/wVg59jbeYQVyaEEEKcPAk/oobOaXGkJdspK/dx9O4nuq5T5vKRlmync1pcmCoUQgghTpyEH1GDqiqMHZ5JtMVIYakHjzeApul4vAEKSz1YLUbGDs+U9X6EEEI0SRJ+RK36ZCZx29g+pLeJxe0NcLjMg9sbIL1NLLeO7SPr/AghhGiyZJFDUac+mUn0ymgtKzwLIYRoViT8iGNSVYUu7ePDXYYQQgjRaOSxlxBCCCFaFAk/QgghhGhRJPwIIYQQokWR8COEEEKIFkXCjxBCCCFaFAk/QgghhGhRJPwIIYQQokWR8COEEEKIFkXCjxBCCCFaFFnh+SgFBQUEAgFGjBgR7lKEEEIIUU/79+/HYDDU67XS+TmKxWLBaJRMKIQQQjQlRqMRi8VSr9cquq7rQa5HCCGEECJiSOdHCCGEEC2KhB8hhBBCtCgSfoQQQgjRokj4EUIIIUSLIuFHCCGEEC2KhB8hhBBCtCgSfoQQQgjRokj4EUIIIUSLIuFHCCGEEC2KhB8hhBBCtCgSfoQQQgjRokj4EUIIIUSLIuEnCPLy8ujatWuN/1u8eDEAmzdvZty4cfTt25dhw4bx0ksvhbni8Fq6dCnnnXcevXr14vzzz+fTTz+tOif3qsKqVatq/Znq2rUrI0aMAOReHcnn8/H0008zbNgw+vXrx9VXX83PP/9cdV7uVXVOp5NHHnmEoUOHcuqpp3Lrrbeye/fuqvNyv+C5555j/Pjx1Y4d775omsaMGTM444wz6NOnD9dffz27du0KZdlhU9v9Avjtt9/o27cve/furXbc4/Ewbdo0TjvtNPr168edd95JYWFh8ArURaNbtmyZ3qtXLz0/P18vKCio+j+Xy6UXFRXpgwYN0qdMmaJv27ZNX7Jkid6rVy99yZIl4S47LJYuXap369ZNf+WVV/SdO3fqs2bN0rOzs/Wff/5Z7tURPB5PtZ+lgoIC/fvvv9e7d++uv/3223KvjvLss8/qQ4YM0b/77jt9586d+pQpU/RTTjlFP3DggNyrWkyaNEk/44wz9OXLl+vbtm3T//73v+unn366XlRUJPdL1/X58+frXbt21ceNG1d1rD73ZebMmfppp52mf/311/rmzZv166+/Xj/rrLN0j8cTjm8jZGq7X7qu6zk5OfrQoUP1rKwsfc+ePdXOPfDAA/pZZ52lr1mzRl+/fr1+ySWX6Ndcc03QapTwEwTPP/+8ftFFF9V67oUXXtDPOOMM3efzVR178skn9XPOOSdU5UUMTdP0M888U//3v/9d7fj111+vv/DCC3KvjsHr9ernn3++fvfdd+u6Lj9XR7vooov0xx57rOrPZWVlelZWlv7ZZ5/JvTrK5s2b9aysLP3rr7+uOhYIBPSzzz5bnzVrVou+XwcOHNAnTpyo9+3bVx81alS1D/Pj3RePx6P369dPf/3116vOl5SU6L1799Y/+uij0H0TIXSs+/Xcc8/pvXv31kePHl0j/Bw4cEDPzs7Wv/nmm6pjO3bs0LOysvRffvklKLXKY68g2LJlC126dKn13Nq1axkwYABGo7Hq2ODBg/ntt9+C2+KLQDt27CAvL48LL7yw2vGXXnqJm266Se7VMSxatIj9+/fzt7/9DZCfq6PFx8fz1VdfsXfvXgKBAG+99RZms5lu3brJvTrKb7/9BkD//v2rjqmqSnZ2NmvWrGnR9+vXX38lLi6ODz74gD59+lQ7d7z7kpOTg9PpZPDgwVXnY2Nj6d69O2vWrAnZ9xBKx7pf3333Hf/5z3+YPHlyjff99NNPAAwaNKjqWKdOnUhJSQnavZLwEwRbt26lsLCQq6++mtNPP52rrrqK7777DoADBw6Qmppa7fXJyckA7Nu3L+S1htPOnTsBKC8vZ+LEiZx22mlcdtllLF++HJB7VRePx8MLL7zAtddeW3U/5F5VN2XKFIxGIyNGjKBXr148/fTTPPPMM3To0EHu1VGSkpKAip+hI+Xl5VFYWNii79fw4cN58sknad++fY1zx7svlfezTZs2NV6zf//+IFUcXse6X6+//jpnn312re/Lz88nISEBi8VS7Xgw75WEn0bm9XrZuXMnDoeDu+++mxdffJFevXpxww03sHLlStxuN2azudp7Kv/CPR5POEoOG4fDAcDkyZO54IILePnllxkyZAi33nqr3KtjeP/99/F4PNUGE8q9qm779u3ExsYye/Zs3nrrLS699FImT55MTk6O3Kuj9OnTh4yMDKZOncr+/fvxer288sorbN68Ga/XK/erDse7Ly6XC6DW17Tk+1Ybl8tV4z5BcO+V8fgvEQ1hNptZs2YNRqOx6i+zZ8+ebN++nZdeeomoqCi8Xm+191T+5Vqt1pDXG04mkwmAiRMnMnr0aAC6devGpk2bmD9/vtyrOixdupSzzz6bhISEqmNyr/6Ql5fHX//6V1555ZWqRzm9evVi27ZtzJw5U+7VUUwmE7Nnz+aBBx5g2LBhGI1Ghg0bxtixY9m4cSNer1fuVy2O93MUFRUFVPyDuPK/K18THR0dukKbgNruJQT3XknnJwisVmuNFJuVlUV+fj6pqakUFBRUO1f555SUlJDVGAkqW8ZZWVnVjnfp0oW9e/fKvapFUVERv/zyC+edd16143Kv/rBhwwZ8Ph+9evWqdrxPnz7s3LlT7lUtOnXqxFtvvcXq1atZuXIls2fPpri4mPT0dLlfdTjefal83FXba45+XNbSpaamUlxcXCMABfNeSfhpZDk5OfTr14+1a9dWO75x40a6dOnCgAED+OmnnwgEAlXnVq5cSadOnUhMTAx1uWHVvXt3bDYb69evr3Z869atdOjQQe5VLX7++WcURWHgwIHVjsu9+kPlh86WLVuqHd+6dSsdO3aUe3UUh8PBuHHj2LhxI3FxccTGxlJWVsaKFSs444wz5H7V4Xj3JTs7G7vdzqpVq6rOl5aWsmnTpmqDywWceuqpaJpWNfAZKibE5OfnB+1eSfhpZFlZWWRmZjJt2jTWrl3L9u3beeyxx1i3bh0333wzY8aMweFwMGXKFLZt28a7777LggULuOmmm8JdeshFRUUxadIkZs+ezUcffcTu3bt5/vnn+eGHH5gwYYLcq1rk5OTQvn37Gq1guVd/6N27N/3792fy5Mn8+OOP7Ny5k2eeeYaVK1dy4403yr06it1uR1EUHn30UbZs2UJOTg4333wzbdu25YILLpD7VYfj3Rez2cy4ceN44oknWLZsGTk5Odxzzz2kpqZy1llnhbn6yJKSksL555/P3//+d1atWsWGDRu47777GDhwIH379g3ORYMygb6FKyws1P/2t7/pQ4YM0Xv16qVfccUV+po1a6rOr1+/Xr/88sv1nj176meeeab+6quvhrHa8Hv55Zf14cOH6z169NAvuugi/Ysvvqg6J/equqlTp+qXX355refkXv2huLhYf/jhh/Vhw4bp/fr106+44gp91apVVeflXlWXn5+v33HHHXr//v31gQMH6pMnT9YLCwurzsv90vXJkyfXWLTvePfF7/frjz/+uD548GC9b9+++g033FBjcb/mqrb7peu6/uOPP9a6yKHT6dSnTJmi9+/fX+/fv79+77336kVFRUGrT9F1XQ9OrBJCCCGEiDzy2EsIIYQQLYqEHyGEEEK0KBJ+hBBCCNGiSPgRQgghRIsi4UcIIYQQLYqEHyGEEEK0KBJ+hBAhE+yVNWTlDiFEfUj4EaKZGz58OA888EBYazhw4AA33XQTeXl5Qfn6paWlTJ48uca2Mk3NzJkz6dq1a7jLEKLZk/AjhAi6FStW8PXXXwft62/evJmlS5eiaVrQriGEaD4k/AghhBCiRZHwI0QL4PP5ePzxxxkyZAh9+/bl+uuvZ9euXdVes3btWsaNG0efPn0YOHAgkydPpqioqNpr1qxZw8SJExkwYAA9e/Zk+PDhzJw5s6rjsnfvXrp27cr8+fM599xzGThwIO+++y5/+9vfABgxYkSdj+BWrVpF165defPNNznzzDM5/fTT+f777wFYvHgxl156KX379qV3795cfPHFfPLJJ1Xv+8tf/gLAX/7yF8aPH1/1Nb/88ksuvfRSevXqxZAhQ/jXv/5FeXl51fnKemfOnHnM+1dYWMiDDz7I6aefTr9+/bjmmmuq7UDt8XiYPXs2o0aNolevXpx99tm8+OKLNTpRn3zyCZdeein9+vVjyJAhPPTQQ5SUlNR53X379jFs2DBGjx5d9TqPx8Pjjz/O0KFD6dmzJxdeeGHVvag0fPhwHn30Ua699lpOOeUUpkyZwp/+9Cfuu+++Gtc499xzq/5+hGgxgrZrmBAiIpx55pl6dna2PmnSJP3bb7/V33nnHb1///766NGjq16zevVqvUePHvrEiRP15cuX6++9954+bNgw/fzzz9ddLpeu67q+efNmvXv37vq9996rf/fdd/q3336r33fffXpWVpb+wQcf6Lqu63v27NGzsrL0Xr166YsXL9Y///xzfe/evfrTTz+tZ2Vl6f/973/1Xbt21Vpn5YaHAwcO1D/99FN96dKlellZmf7aa6/p2dnZ+qxZs/Qff/xR/+yzz/QxY8bo3bt31/Py8qpek5WVpb/22mt6bm6uruu6/sEHH+hZWVn6fffdp3/zzTf666+/rg8YMEC/9tprdU3TdF3XdY/Ho//yyy/6/v3767x/TqdTHzlypD506FB9yZIl+vfff6/fcMMNet++ffVt27bpmqbp1113nd63b1997ty5+vfff68/+eSTerdu3fS///3vVV9n9uzZelZWlv7www/r3377rb5o0SJ94MCB+oUXXlh1j2fMmKFnZWXpuq7rBQUF+llnnaVfdNFFVRs8apqmT5w4Ue/Xr58+f/58/dtvv9X/8Y9/6FlZWfp7771X7e+8e/fu+vTp0/Xvv/9eX7t2rf6f//xH7927t15WVlb1unXr1ulZWVn66tWr6/fDJEQzIeFHiGbuzDPP1IcOHap7vd6qY0899ZSelZVV9UF4xRVX6BdccIHu9/urXrNjxw69W7du+muvvabruq6/9957+qRJk/RAIFD1mkAgoJ966qn6P/7xD13X/wg/9913X7Ua3nnnnVp3cj5SZfh56qmnqh1/7LHH9Mcff7zasY0bN+pZWVn6hx9+WO29P/74o67rFSHhz3/+sz5x4sRq71uxYoWelZWlf/XVV3XfsKO89tpreteuXfXNmzdXHXO73fqoUaP0N954Q//666/1rKws/f3336/2vsqwk5ubqxcXF+s9e/bUp0yZUu01a9as0bOysvRFixbpuv5H+CkqKtIvuOAC/cILL6y2s/X333+vZ2Vl6R9//HG1r/N///d/+pAhQ3Sfz6fresXf+bBhw6r9Xe3YsUPPysrSlyxZUnVs6tSp+siRI6vCoBAthTz2EqIF6N27NyaTqerP7du3BypmSblcLtavX8/QoUPRdR2/34/f76d9+/ZkZGTwww8/AHDJJZcwd+5cfD4fubm5fPnll8ycOZNAIIDP56t2vaysrBOu9ejZTg888AB//etfKSsr43//+x8ffvghixYtAqhx3Uo7duzgwIEDDB8+vOr78fv9DBgwALvdXvU91cfatWtp164d2dnZVccsFguffvopV155JatXr8ZgMHDeeedVe99FF10EVDyWW7duHV6vlwsvvLDaa/r3709aWhqrVq2qdnzSpEls3bqVv/3tbyQkJFQdX7lyJYqiMHTo0Grf1/Dhwzl48CC5ublVr83IyEBV//gV36lTJ0499VTef/99ALxeL5988gmXXHIJiqLU+34I0RwYw12AECL4rFZrtT9XfihqmkZpaSmapjF37lzmzp1b470WiwUAt9vNI488wvvvv4/f76ddu3b069cPo9FYY32d1q1bn3CtiYmJ1f68e/duHnroIX788UeMRiOdO3euCkhHX7dScXExANOmTWPatGk1zhcUFNS7nuLi4ho1HamkpISEhASMxuq/TpOSkgAoKyurGq9T231p3bo1ZWVl1Y6Vl5fTsWNHnnjiCd5++20MBkNVLbquc8opp9RaS0FBAd26davzWmPHjuXBBx9k3759rF+/ntLSUkaPHl3n9yZEcyXhR4gWzmazoSgK1113Heeff36N89HR0QBMnz6dzz//nGeeeYbTTz+9KlCddtppQatN0zRuvPFGTCYTb7/9Nt27d8doNLJt2zY++OCDOt8XGxsLwP3338/AgQNrnI+Li6t3DTExMezdu7fG8V9++QW73U5cXByHDx/G7/dXC0CVASshIaHqeocOHSIjI6Pa1zl48GBVJ67SwoUL2bp1K9dffz0LFy5kwoQJVbVYrVYWLlxYa60dO3Y85vcyatQo/vWvf/H555/zyy+/cNppp9G2bdvj3AEhmh957CVEC2e32+nevTs7duygV69eVf+XmZnJrFmzqh7J/PTTTwwaNIiRI0dWBZ+NGzdSVFR03PV1jnz80hCHDx/mt99+Y+zYsfTu3bsqXHz77bcAVdet7IxU6ty5M4mJiezdu7fa95SamsqTTz7Jpk2b6l1D//792bNnD1u2bKk65vV6ueOOO3j77bcZOHAggUCgxoyrynB26qmn0qdPH8xmMx9++GG116xdu5Z9+/bV6OQkJSUxZMgQzj//fJ599ln27NkDwMCBAykvL0fX9WrfV25uLrNnz8bv9x/ze7FarZx33nl89NFHfPfdd9L1ES2WdH6EENx7773ceOON3HfffVx00UUEAgFefvll1q9fzy233AJUjBv69NNPeeONN8jIyCAnJ4fnn38eRVFwuVzH/PqVnZgvvviCP//5zzW6H3VJTEwkLS2NRYsWkZqaSmxsLN9//z0LFiwAqLpuTEwMAF9//TVxcXFkZ2dzzz338NBDD2EwGDjzzDMpLS3lueeeIz8/nx49egAVIWbTpk2kpqaSmppaaw2XXnopr776Krfccgt33XUXrVq1YtGiRbjdbsaPH0/79u0ZNGgQU6dOpaCggO7du7N69Wrmzp3L6NGj6dKlCwA33ngjs2bNwmQyMWLECPbu3cuzzz5Lly5duPTSS2u99t/+9je+/fZbHnroIebPn8/QoUMZMGAAt956K7feeisZGRls2LCBmTNn8qc//YlWrVod956OHTuWK664Arvdztlnn12vvwchmhsJP0II/vSnP/HSSy8xa9Ys7rzzTkwmEz169GD+/Pn07dsXqBh47PP5eOaZZ/B6vbRr145bbrmFbdu2sXz5cgKBQJ1ff9CgQZx++uk8+eSTrFy5khdffLHetT333HNMnz6dBx54ALPZTJcuXXj++ed59NFHWbt2LePHjyczM5MLLriARYsW8d133/HRRx9x2WWXYbPZmDdvHm+99RZWq5VTTjmFJ554ouoxU0FBAVdccQW33347d9xxR63Xt9vtvPbaazz++ONMnz4dv99Pnz59ePXVV+nQoQMAc+bMYcaMGSxcuJCioiLatWvHPffcU/W4CuCOO+6gdevWvPbaayxevJj4+HhGjRrF3XffXfVo8WhJSUncc889/POf/+Sdd95hzJgxvPjiizz77LPMmTOHwsJCUlJSuO6667jtttvqdT/79u1LQkICZ599NlFRUfX+exCiOVH0ukYMCiGEaHY2bNjAZZddxjvvvEPPnj3DXY4QYSGdHyGEaAFWrVrFqlWrWLp0KYMHD5bgI1o0GfAshBAtwOHDh5k/fz6JiYk89thj4S5HiLCSx15CCCGEaFGk8yOEEEKIFkXCjxBCCCFaFAk/QgghhGhRJPwIIYQQokWR8COEEEKIFkXCjxBCCCFaFAk/QgghhGhRJPwIIYQQokWR8COEEEKIFuX/A+HMplvNbdQLAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.regplot(data = heartRates, x=\"cookery\", y=\"horror\")\n",
"plt.xlabel('heart rate: cookery')\n",
"plt.ylabel('heart rate: horror')\n",
"\n",
"# add the line x=y (ie a line from point(50,50) to (110,110)) for reference \n",
"plt.plot([50,110],[50,110],'r--')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "90e1e7e6",
"metadata": {},
"source": [
"**Note** - *the red dashed line is the line of equality $(x=y)$; heart rate is generally higher for each individual in the horror condition (most points lie above teh line $(x=y)$. There is a strong correlation between the two measures of heart rate for each individual, indicating an individual differences in heart rate regardless of condition, which should be controlled by the use of a repeated measures design.*\n",
"\n",
"The mean increase in heart rate in the horror condition was X.XX beats per minute (condition means were XX.X bpm for cookery and XX.X for horror). The standard deviation of differences in heart rate was X.XX bpm (condition standard deviations were XX.X bpm for cookery and XX.X for horror). \n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "bbe31317",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"